Posted in Life & Happiness

Shoot For The Moon

A common saying goes:

“Shoot for the moon: even if you miss, you’ll land among the stars”.

The saying was coined by author Normal Vincent Peale, who was a minister famous for his books and work on the power of positive thinking. He was also widely criticised by many psychologists and mental health experts, who noted that his style of positive psychology was not founded in evidence and realism, but in naive optimism.

The saying sounds lovely at first, because it seems to be a beautiful metaphor for trying your best at everything. It says that whatever happens, you will land on another beautiful opportunity and good things will happen.

But of course, life does not work that way. As important as it is to make an effort to try and take action, you will not always be positively rewarded for it.

As it is with everything, science can help us break down the flaws with the philosophy of this saying.

Firstly, the Moon is 384,400km away from Earth. It took brilliant scientists and mathematicians with a significant amount of NASA budget 6 years on the Apollo program to put astronauts on the Moon.

Dreams are certainly achievable, but we cannot ignore that sometimes we have to pour in much time, resources and energy to achieve them. When we look upon someone’s success, it is important to consider how much effort they may have put in. Furthermore, it is paramount that we be realistic with our goals and dreams, in that we need to be patient and accept that it could take a series of failures, sacrifices and heartbreak for us to land on the Moon.

Secondly, space is unimaginably massive. If you shoot for the moon and you miss, there is a very high chance that you will float along the lonely, vast emptiness of space for the rest of eternity in a vacuum before you hit anything else (realistically, you will die of suffocation, thirst, starvation or being frozen first). The nearest star to us is the Sun, 150 million kilometres away. The second closest star – Proxima Centauri – is about 4.24 light years away. This means that even if you travelled at the speed of light, it would take 4.24 years, covering a distance of 40 trillion kilometres.

This fact teaches us that we have to be prepared for the fact that when we chase our dreams, there is a chance of things catastrophically failing. That is just life.

Lastly, even if by some miracle you survived the journey and landed among the stars, it would not be what we expect. As romantic as it sounds to land and live on a star like the Little Prince, in reality, stars look much like the Sun – a gigantic, glowing ball of fire. You will be incinerated even before you land on it.

And there is our final lesson from this saying: even if you achieve your goals, the end result may be completely different to what you expected. You may not even be happy with the outcome. So avoid pinning all of your hopes and happiness on achieving a single dream. Make sure to diversify your goals and identity.

As factually wrong as the saying may be, we can still learn valuable lessons from it, albeit completely the opposite message. But perhaps this is the more important truth in life: sometimes, we fail to achieve our dreams.

That said, we must continue to try for our goals and dreams, just with realistic expectations of how life can go. Had NASA given up after the tragic fiery accident of Apollo 1, we may have never been able to experience the glorious moment of humanity setting foot on another celestial body.

Shoot for the moon, but maybe have a backup plan. And if you fail, don’t lose heart and give up, but instead try again and try new, different things constantly.

Posted in Science & Nature

Kessler Syndrome

When we imagine catastrophes, we think of disasters involving mass destruction such as volcanic eruptions, tsunamis and nuclear war. But there are so many creative ways the future of humanity can go awry. For example, there exists a possibility of humanity losing the ability to launch anything into space for the foreseeable future.

This interesting hypothetical scenario was described by astrophysicist Donald J. Kessler in 1987. Earth is currently surrounded by many layers of orbiting satellites. Unfortunately, satellites eventually break down and its components can end up as space debris. Since there is nothing in the vacuum of space that will degrade them, space debris stay in an endless orbit around the Earth unless they fly low enough that they get caught by air resistance and burn up in the atmosphere.

Kessler proposed the following problem: what happens when debris collide and set off a chain reaction? Although we think of orbital objects as slow moving or even geostationary, orbital objects are travelling at extreme speeds – at least 8km/s (or 28,800km/hr). When two objects collide at such incredible speeds, there is a huge amount of energy released in the form of shrapnel.

If the orbit is dense enough with debris, it is theoretically possible that these shrapnel will hit another piece of debris and set off another reaction. If the chain reaction can sustain itself long enough, soon the entire orbit will be littered with high-speed shrapnel, obliterating any object trying to cross the orbital layer.

The implication of the Kessler syndrome is that it would essentially make it impossible for us to launch any new satellites or rockets into space. This would stop us from exploring the depths of space and dash any hopes of interstellar travel and space colonisation. Scientists are already working on policies to reduce further space debris and experiments on how to clear up debris. But without awareness of the issue, no change would happen.

With climate change becoming an increasingly pressing issue, it is ironic that our littering of space could potentially ruin our chances of escaping and finding a new home if the need should arise.

Posted in Science & Nature

Verneshot

If there is one thing we learn about dinosaurs, it is that they were wiped off the face of the Earth by an asteroid impact. Another feasible theory is that a supervolcano eruption completely destroyed the ecosystem, wiping out all life on Earth by either directly destroying them via a massive shockwave (if they were within range), or by slowly starving them as the resultant plumes of smoke would have blotted out the sun for years. But interestingly, scientists looking back over some extinction-level events of the past, discovered signs of both an asteroid strike and a volcanic eruption. This sounds to be extremely implausible, as the odds of both happening in the same era are near impossible (unless there is some extremely vengeful deity that hated the dinosaurs).

One theory that tries to explain all of this is the verneshot theory. To better understand the concept of a verneshot, imagine a cartoon character such as Yosemite Sam (the beloved red-bearded, gunslinging cowboy character on Looney Toons) shooting his gun wildly into the sky. Cartoon logic dictates that his bullets will eventually fall back on some unwary bystander. Now imagine if the Earth did the same thing, but instead of a bullet it shoots a giant piece of rock capable of causing mass extinction into the sky.

A verneshot occurs in a similar way a supervolcano erupts, where there is an incredible build-up of super hot molten rock. A supervolcano would be when this molten rock erupts as lava. In the case of a verneshot, massive amounts of carbon dioxide build up instead, leading to a pressure build-up under the crust. When the pressure becomes too much, the crust explodes, with the piece (of indeterminate size) being rocketed into space. However, the giant rock does not end up in space. Instead, it is only launched to a sub-orbital altitude, meaning it will come crashing back down to Earth due to gravity. Thus, a verneshot is when a volcanic eruption acts as a giant cannon to launch a piece of the Earth into the sky, which falls back to Earth as an asteroid-like object.

Posted in Science & Nature

Newton’s Apple

Common belief is that Newton discovered gravity after an apple dropped on his head. Although there is no historical evidence to support this myth, it has become a popular story. There are two common responses to this story: the first is “Wow, Newton was a smart cookie” and the second is “Pfft, I could have discovered gravity without an apple, it is such an easy thing.”

The latter group of people are idiots. Newton did not “discover” gravity. Human beings have known that objects fall to the ground since the dawn of time and have utilised it in ways ranging from sports to killing other people by crushing them with giant rocks. Even animals know of the concept as seen by eagles dropping turtles on rocks to crack the shell. In fact, if you could not figure that out, then you would really be an idiot.

The reason why Newton is famous is not because he found that apples fall from trees, it is because he observed the phenomenon, noting that it was always perpendicular to the ground, which in combination with the knowledge that the Earth is round suggests that objects tend to fall towards the centre of the Earth. Again, Newton’s brilliance was not that he simply observed an apple falling, it was that he pondered it and spent years researching it until he discovered the way gravity behaves. He devised formulas to estimate how gravity functions, even applying it to predict how the moon orbits around the Earth. Thanks to Newton, we are able to model the world around us and send rockets to the moon without launching our astronauts in to the depth of space with no hope of recovery. 

Interestingly, physicists still do not know what causes gravity. There are many theories, such as particles called gravitrons attracting two objects to each other. Although the mathematics of two objects attracting each other has been accurately calculated, it is unknown what causes it. Only after you discover the truth behind how gravity functions can you say that “I could have discovered gravity in my sleep” (actually, even then you probably spent decades just trying to grasp the concept).

Before you criticise, know what you are criticising. 


Posted in Science & Nature

Murphy’s Law

In 1947, an aerospace engineer named Edward A. Murphy Jr was involved in high-speed rocket sled experiments led by the US Air Force. The aim of the experiment was to research the effect of sudden deceleration on the human body so to improve the safety of jet fighter pilots. To study this, a flight surgeon named Dr John Stapp devised a “sled” attached to a rocket that could be used on a long track. The rocket would propel the sled to a massive speed and brakes would induce as sudden deceleration. However, they found that the machines that were used to measure the G-force (force of deceleration relative to the force of gravity) were unreliable. Murphy proposed that they use electronic strain gauges attached to the harness of the test subject to measure the G-force, something he learned while working with centrifuges.

The idea was great but there was one problem: the gear kept failing, showing no reading whatsoever. Murphy soon found that the sensors were attached correctly but were wired backwards. This simple mistake frustrated Murphy, who blamed the incompetency of his assistant, stating that “if that guy has any way of making a mistake, he will.” This became the famous Murphy’s law, now simplified to “Anything that can go wrong will go wrong”.

Murphy’s law actually played a fundamental role in defensive design, where the worst-case scenario is always assumed and prepared for. Thanks to this system, the rocket sled experiment was successful and in 1954 Dr Stapp became the fastest man in the world – travelling at a speed of 1011km per hour and decelerating at a force of 46G (it was hypothesised that a human being could not survive past 18G). Not only did he survive (albeit with broken limbs, ribs, hernias, detached retina and temporary blindness), Dr Stapp went to build bigger rockets to further test the limits of the human body.

Interestingly, there’s another side to the Murphy’s law involving psychology. People suffer from a fallacy called appeal to probability, where they believe that because there is a possibility of something can happen, it will happen. The brain is surprisingly inefficient in dealing with probabilities and has a tendency to ignore that there is a relatively miniscule possibility and instead focuses on the absolute fact that there “is” a probability. This is the best explanation for why people are compelled to buy lottery tickets and why every student believes they will grow up to be rich and successful.