In 1954, an 18-year-old Australian man by the name of James Harrison began donating blood. This is certainly not an unusual fact – over 100 million units of blood are donated worldwide each year. Harrison required massive amounts of blood transfusion during a major chest surgery he required 4 years prior. Knowing that he owed his life to the generous gift of blood from others, he pledged to donate blood as soon as he met the required age for it.
Soon after the first few donations, it was discovered that his blood had a peculiar property. Harrison’s blood contained unusually strong, long-lasting antibodies against a protein called the D Rh group antigen, or Rh(D).
Why was this such an important discovery?
In blood transfusion, blood types are crucial as transfusing the wrong type of blood can trigger an immune reaction in the donor’s body, potentially killing them. This is because red blood cells (that carry oxygen in the blood) are coated with different proteins called antigens. Your body ignores antigens that it is used to, but if it detects any new protein, it will create antibodies and viciously attack the cell as it thinks it is an infection.
Most people know their blood type as A, B, AB or O. A and B are the two most prominent antigens for red cells. If you are type A, you have A antigens. Type B have B antigens. Type AB have both antigens, while type O have neither antigens.
So, for example, if you transfuse type AB blood into a type B person, the donor’s immune system ignores the B antigen, but since it has never seen A antigens, it attacks the new blood and can make the donor very sick (or die).
The second most prominent antigen is Rh(D) (previously Rhesus factor). If you have it, you get a “+” next to the ABO typing (e.g. B+); if you don’t, you get a “–” (e.g. O-, the “universal donor” blood).
Rh(D) was a huge issue in medicine because it resulted in many babies dying or suffering brain damage due to haemolytic disease of the newborn (HDN) – a transfusion reaction where the mother’s immune system attacks the fetus due to different blood typing.
The so-called “anti-D” antibodies that were discovered in Harrison’s blood provided scientists with a weapon to fight against HDN.
HDN happens when a Rh negative woman develops antibodies to Rh(D), then has a baby with Rh positive blood. For example, if a Rh- woman has a Rh+ baby in the first pregnancy, the body detects the baby’s blood during birth, senses the Rh(D), then develops antibodies so it can fight it next time.
If you give the woman anti-D before the body has a chance to detect the antigen, the anti-D will immediately attach to all the Rh(D) antigens, shielding it from the body. Therefore, the woman never becomes sensitised to the antigen and doesn’t make antibodies. No antibodies, no HDN.
James Harrison was well aware of the power of his blood, so he proceeded to donate blood every two weeks for 57 years – over a 1000 donations. It is estimated that his blood helped save the lives of 2.4 million babies worldwide, including his own grandchild. Hence, he is known as The Man With The Golden Arm.