Posted in Science & Nature

Caesarean Section

(To read about how babies are made and born, read the From Cell to Birth miniseries! https://jineralknowledge.com/tag/arkrepro/?order=asc)

Most animals give birth through a female’s vagina. Of course humans are the same when it comes to natural birth, but nowadays, it is not uncommon to find women wanting a caesarean instead of the traditional method. A caesarean (also called C-section) is a surgical procedure where the fetus is taken out by cutting through the lower abdomen into the uterus. The history of caesareans is quite dark. Back in the old days when medicine was not advanced, caesareans were mostly used to rescue fetuses from mothers who had died during childbirth. The first record of a successful caesarean where the mother survived dates back to the 1500s. Many people believe the word “caesarean” came from the Roman emperor Julius Caesar, who was allegedly born via a caesarean. However, it was rare for caesareans to be performed in Roman times and even if they were, the mothers almost certainly died in the process. Given that his mother was alive and healthy well into his adulthood, it is highly unlikely that Caesar was born by caesarean (there are no concrete records of it either).

There is much debate to whether a caesarean is better or worse than natural birth (except in emergency situations where a caesarean is required). According to research (in cases without known risks to the fetus), the mortality rate is definitely higher in babies born by caesarean compared to those born naturally. This is most likely due to a caesarean bypassing some of the physiological changes that occur during vaginal birth.

Another debate is about the use of general versus regional anaesthesia (spinal block) when doing a caesarean. A fascinating fact about childbirth is that when a baby is born, it cries to expand its lungs but then quietens down for about an hour (unless it is in pain or there is some stimuli). This is possibly a mechanism to allow bonding between the mother and baby. New mothers often remember the moments following the birth of the child as extremely emotional and blissful. Contrastingly, mothers who are under general anaesthesia and not awake when their child is born bond less with the baby initially (some mothers do not even recognise the baby as their own). Thus, unless it is an emergency caesarean, a spinal block (which allows the mother to be awake and painless) is preferable over general anaesthesia.

Lastly, it is common tradition to cut the umbilical cord straight after the child is born. But is this okay? When the fetus is in the uterus, it shares its cardiovascular system with the placenta. The umbilical cord connects the two and carries blood to and fro. At any given point, the placenta contains 30~50% of the fetal blood. If the umbilical cord is suddenly cut, the fetus essentially loses this blood, being born in a state of low blood volume. If you look at the umbilical cord, you can see that it is about 1m in length, which is enough for the baby to be put next to the mother’s breasts for breastfeeding and bonding. Perhaps we are cutting the cord too soon, not letting the blood flow back from the placenta to the fetus.

If you think about it, humanity has been giving birth without too many problems to survive generation after generation for 200,000 years (otherwise we would not exist). Although the mortality rate was high, Mother Nature has optimised childbirth over time through evolution. Ergo, it is possible that modern medicine is intervening too much in a natural process. We must always consider whether medical advances are helpful or harmful to us.

image

Posted in Science & Nature

From Cell To Birth: Growth

After implantation, the embryo quickly grows from a ball of cells into what will be a fully-formed baby. However, it first needs a way to feed: the placenta.
It is an organ that actively takes nutrients and oxygen from the mother’s blood, exchanging it for the embryo’s waste products. It is extremely effective in keeping the fetus alive and protects it from infections or the mother’s immune system.
The blood is carried by the umbilical cord, which plugs into the belly button. This cord is the lifeline throughout term, and disrupting the blood supply will lead to permanent brain damage or even death.

In the first 10 weeks, the blastocyst develops into a very primitive disk-like object that shares no resemblance to a person. It keeps growing and differentiating at a rapid rate (almost doubling in size per week) until it forms an embryo that is more familiar, roughly about week 6. Interestingly, a human embryo looks almost identical to embryos of rabbits, chickens, turtles and fish, showing how all animals shared a common ancestor in the course of evolution. At this stage, the embryo has features such as gills, a tail and a fish-like appearance.

After 10 weeks, the embryo has grown to about 5~8cm (almost 10~20 times the size at week 6), and is now called a fetus. It begins to properly grow organs, and resembles a miniature baby with primitive features.
It continues to grow for the next 30 weeks, continuously relying on the mother for nutrition and life support.

Many different factors contribute to premature birth and IUGR (intrauterine growth restriction), which leads to the birth of a small baby. This may result in less developed organs (especially the lungs) and may affect the health of the newborn throughout its life. There are also many poisons known to harm the development of the embryo/fetus, such as alcohol, nicotine, cocaine, heroin and much more. These should be avoided from a few weeks before conception onwards (even after birth while breastfeeding).

By about 38 weeks, the lungs (the last organs to fully mature) are ready and the fetus is upside down. It is ready to leave the womb, and thus sends a signal to the mother, known as labour. This is when the arduous process of childbirth begins.

(Full series here: https://jineralknowledge.com/tag/arkrepro/?order=asc)