Posted in Science & Nature

Blue

Why is the sky blue? This is because of a phenomenon called Rayleigh scattering where molecules and tiny particles in the atmosphere scatter direct sunlight. Light scatters at different amounts depending on its frequency. Because of this, blue and violet light (short-wavelength light) scatters more than the other colours, causing the sky to be blue. But during sunrise and sunset, the light enters the atmosphere from an angle, causing blue and green light to be so scattered that you cannot see it. This produces a red or orange colour.

The deep ocean is blue for a similar reason; red and yellow light is absorbed while blue becomes scattered by the water. However, the colour of the sea is also largely dependent on the colour of the sky at the time, as it reflects the sky. The colour of the sea may change due to algae in the water, which can make it green, brown or even red.

A similar form of light scattering called the Tyndall effect is responsible for blue eyes, caused by a turbid layer in the iris. The Tyndall effect can also be seen in a glass of water mixed with milk, or flour suspended in water.

Blue has one of the most interesting histories compared out of all the colours. In the ancient world, blue was considered a lowly colour, with some cultures such as the ancient Greeks not even considering it a “real colour” such as red, black, white and yellow. In fact, the Greeks did not have a word for the colour blue; it was merely called bronze colour. The ancient Romans considered blue the colour of barbarians. The Romans stereotyped blue-eyed women as promiscuous and blue-eyed men as aggressive and foolish. Only the ancient Egyptians liked the colour blue, as they considered it a colour of divinity. They made blue dye from copper.

Perhaps the hatred for the colour blue was due to the difficulty of making blue dyes. This all changed nearer to medieval times as artists and dyers successfully created blue dyes from minerals such as lapis lazuli, azurite and cobalt. Blue became the colour of the Virgin Mary. Artists began painting the sky and the sea as blue, which were previously depicted using black, white and green. Nobles began wearing blue instead of the traditional red and purple, and dyers followed this trend by devising better blue dyes with a variety of shades.

image

This led to the thriving of blue dye industries in European cities such as Amiens, Toulouse and Erfurt, where blue dye was made from a plant called woad. Although this was a very lucrative business, blue was still a very expensive and difficult colour to use, with the dying process involving soaking the woad in human urine (which contains ammonia) to extract the colour.

Blue became a much more accessible colour in the 18th century when flourishing trade brought indigo from the Americas. Indigo was much easier to use, more concentrated and produced a richer, more stable blue than woad. As blue became more and more popular, synthetic blue dyes were discovered – one of the most famous being Prussian blue which was discovered in Berlin in 1709.

Throughout its history, perhaps the product that best promoted the status of blue as a colour is the denim jean (dyed with indigo blue), invented by Levi Strauss in 1873. 

In modern times, blue is an extremely popular colour that is widely used in art, fashion, architecture etcetera. However, the one field that blue has not yet been able to set foot in is food. Researches show that the colour blue drastically decreases a person’s appetite as it is associated with poison in the natural world.

image
Posted in History & Literature

Destroyer Of The Environment

In the history of mankind, who could be considered to have done the most damage to the environment? Although many names may pop up, no one comes close to the destruction that resulted from one man: Thomas Midgley Jr. While working for General Motors in 1916 as a chemist, Midgley discovered that adding iodine to kerosene reduced “knocking” in engines – where pockets of air/fuel mixture explode in the engine. The effects of knocking on engines range from negligible to destructive. However, he found that the iodine only reduced knocking slightly. To improve on this, he tried adding different elements to fuel until he found the magic solution – lead. And so, the leaded petroleum was born.

Leaded petrol was an instant commercial success and it became the most popular choice of fuel. This resulted in cars, buses, planes and almost all motor vehicles pumping out billions of tons of lead into the atmosphere for over seventy years. Unfortunately, lead is a highly toxic metal that causes symptoms such as muscular weakness, pain, nausea, vomiting, fatigue and madness. Lead poisoning is particularly dangerous to children as it can cause irreversible retardation of physical and mental development. Even though the effects of lead poisoning were recognised since the late 19th century (with many workers and even Midgley himself suffering from it), it was only after the 1970s when fuel companies stopped adding lead to their fuel. Thanks to Midgley’s idea of adding lead to petrol, who knows how many children would have suffered a crippling illness due to lead poisoning.

But Midgley’s “accomplishments” did not stop there. In the late 1920s, Midgley decided to tackle the problem of using sulfur dioxide, propane and ammonia as refrigerants (possibly out of guilt over the whole lead fiasco), which were effective but prone to combusting or exploding. Within three days, he developed an alternative – dichlorofluromethane. This amazing gas was inert, non-toxic and did not have the risk of exploding. It was the first of the chlorofluorocarbons (CFC), which was named “freons”. We now know that freons are responsible for destroying the ozone layer.

In 1940, Midgley contracted polio, causing him to be disabled. Poliomyelitis causes paralysis due to the destruction of motor neurons. Being an inventor, Midgley devised a clever device that would help him off the bed using pulleys and strings. Unfortunately, one day the invention twisted in a certain way, leading him to become entangled in the ropes and being killed of strangulation.

Such was the sad life of Thomas Midgley Jr, who environmental historian J. R. McNeill dubbed “[someone who] had more impact on the atmosphere than any other single organism in Earth’s history”.

Posted in Science & Nature

Rain

Let’s imagine that you are walking outside, when rain clouds catch you by surprise and suddenly pour down on you. Assuming that you have no umbrella or anything to cover yourself with, is it best to run back home or walk back? Or to elaborate, should you walk and spend more time in the rain, or should you run, which means you will run into rain sideways?

There are two ways you can get wet in the rain: it will either fall on top of your head, or you will run into it from the side. The amount of rain that falls on your head is constant whether you are walking or raining, as the entire field you are travelling through is full of raindrops. Therefore, one would naturally think that running would not add much benefit as you run into more rain by moving faster, as you essentially hit a wall of raindrops.

But this is not true. No matter how fast you travel, the amount of rain you hit sideways is constant. The only variable that affects the amount of rain you hit sideways is the distance you travel. This is because the amount of raindrops in the space between you and your destination is constant.

Summarising this, the wetness from rain you receive is:

(wetness falling on your head per second x time spent in rain) + (wetness you run into per meter x distance travelled).

Since you cannot really change how far you are from your destination, the best way to minimise getting wet is to run as fast as you can to minimise the time you spend in the rain.

Then again, this is only the most practical option to keep you dry. If you are feeling particularly romantic or blue, then feel free to stroll through the rain, savouring the cold drops on your face (or wallow in the sadness that is your life).

(Here’s a very good video explaining the maths/science of it all: http://www.youtube.com/watch?v=3MqYE2UuN24)

image

Posted in Science & Nature

Hammer And Feather

What would happen if you dropped a 1kg ball and a 10kg ball at the same time from a high building? Most people would think that the 10kg ball would obviously fall faster and thus hit the ground faster, but the truth is they would fall at exactly the same time. The reason for this is that the force that accelerates a falling object is gravity, which on Earth is constant at 9.81ms-2. This means that no matter how heavy the object is, they will always accelerate by 9.81 metres per second per second. This was hypothesised by Galileo Galilei, who came up with the thought experiment of dropping two balls of different mass from the Leaning Tower of Pisa (there is debate as to whether he actually performed the experiment). The theory was later solidified by a certain Isaac Newton, who devised the laws of universal gravitation and the three laws of motion.

image

However, if the two balls were dropped from an extremely high place, they may land at different times as mass affects the terminal velocity – when the force of gravity equals the force of drag caused by air resistance, leading to a constant velocity. A heavier object will keep accelerating to a greater velocity than a lighter object, which would have reached terminal velocity before the heavier object.

One place where this will not happen is in a vacuum where there is no drag force. To prove that the hypothesis that two objects of different masses will fall at the same time in the absence of air resistance, Commander David Scott of the Apollo 15 moon mission took a hammer and a feather with him. Once he landed on the moon, he dropped the hammer and feather in front of a live camera, showing that the two landed at exactly the same time. He thus proved that Galileo’s conclusion from two hundred years ago was in fact correct.

Posted in Science & Nature

Alligator

What is the best or easiest way to protect yourself from an alligator attack? Obvious answers aside (such as avoiding them), it is to use something like an elastic band or a rope to tie their snout shut. Alligators have the strongest bite in the natural world – clocking in at about 2125 pounds of force (about 966kg). The sheer force of the bite is enough to crush the victim and kill them instantly. Even if the victim survives, there is a serious risk of being left with a permanent disability or die from an infected wound.

Although the force of the bite is incredible thanks to its extremely strong jaw muscles, alligators do not have nearly enough the same strength when opening their jaws. This means that a simple elastic band is enough to keep their jaws shut, leaving the alligator helpless and giving you a chance to run before its friends come to find you.

Image result for alligator jaw closed shut

Posted in Science & Nature

Tea

Among the many hot beverages the world enjoys, tea is probably the number one. No matter how many people drink coffee, no beverage has a history like tea. From the tea ceremony cultures of the East to the Boston Tea Party of the West, the history of tea is long and full of stories. As everyone knows, tea is a drink made by boiling down the leaves of a plant. There are many types of tea: black, oolong, green, yellow and white being the most common. Teas made from more aromatic plants such as jasmine and chamomile are typically put in a separate category known as herbal teas. One surprising fact about tea is that most of them are derived from the same plant.

The plant Camellia sinensis is the source of all teas, with the aforementioned black, oolong, green, yellow and white teas all coming from the leaves of this one plant. However, what makes each tea unique is the way the leaves are processed. For example, if you steam freshly picked leaves of the Camellia sinensis plant then dry them out, you make green tea. If you wither the leaves then lightly crush and bruise them to promote oxidisation, you make black tea. The different ways of processing tea leaves gives each type of tea a unique flavour due to a variety in the ratio of various chemicals. For example, black tea is rich in tannin because of oxidisation, whereas green and oolong teas are milder as they have higher levels of catechins than tannin (the oxidised product of catechin). As catechins act as antioxidants in the human body, green tea is effective in slowing the aging process.

Although the source of the leaves are the same, the different ways of processing makes each tea unique in their ways of preparation. The milder white, yellow and green teas are best prepared by steeping them in water heated to (or cooled from boiling) 70~80°C for 1~2 minutes, while oolong and black tea should be steeped for 2~3 minutes in near-boiling water (80~99°C) for the best taste.

Posted in Science & Nature

Wave

One of the joys of going to a beach is listening to the breaking of waves. Waves are typically associated with the ocean, but can also form on lakes, rivers, canals or any body of water with a free surface. 

Waves are caused by wind blowing over the water surface, dragging it in a certain direction. As the wind only affects the surface, the water below rises to fill the space, causing a circular movement. This appears as a wave on the surface. The faster the wind blows, the more the surface is shifted and the bigger the waves become. Other factors that determine the wave size are: water depth, distance of water that the wind blows over (fetch), the width of the area of the fetch and the duration the wind blows over the area. Because of these factors, some lakes may be as wavy as the sea while others are completely tepid.

The waves formed by the wind merge to form bigger waves in the ocean. The resulting wave is known as a swell. When the swell reaches the shore, the depth of the water reduces, causing the wave to rise in height and become steeper. If the wave is high enough, the base becomes unstable and the wave collapses, which is what causes waves to break.

Although it sounds like a simple process, the consequences can be deadly. Wind waves can reach heights above 30m given that the conditions are right (usually during extremely serious storms). Such a wave can flip a cruise ship with ease like a rubber toy.

Posted in Science & Nature

Honeybee Dance

How do honeybees share the location of a food source, such as a flower, to other bees of their colony? An Austrian biologist named Karl Von Frisch devised an experiment to learn how the honeybees communicated with each other. He set up two different food sources and tagged every bee that came to pot A green and bees that came to pot B red. He then studied the behaviour of these bees back at the hive. What he discovered was fascinating.

For millennia, beekeepers have noticed that some honeybees have a tendency of moving in a peculiar yet methodical way once they returned to their hive after foraging for flowers. The bees would move in a straight line while waggling their bottom (moving side-to-side), then walk in a semicircle back to where they started. They would then waggle in the same direction, then move in a semicircle on the opposite side, completing a figure-eight path. This is called a waggle dance.

image

Frisch noticed that bees with green spots and the bees with red spots both did the waggle dance once they returned to the hive, but in different directions. All bees with green spots danced so that the straight line pointed a certain direction, while the bees with red spots danced the same dance except pointing another direction. Amazingly, the angle between these two directions was exactly the same as the angle separating pot A and B (with the hive as a point of origin). Frisch deduced that the waggle dance was the language of honeybees.

Through further experimentation, Frisch was able to tease out the details of this “language”.

  • Honeybees’ eyes can see ultraviolet and polarised light, which allows them to see where the sun is in the sky at all times. This is because sunlight polarises so that it points towards the sun and honeybees can see this direction. Therefore, the bee’s eyes act as a solar compass that tracks the exact location of the sun in real-time.
  • Bees have a finely-tuned internal clock that allows them to predict exactly where the sun should be depending on time, season and latitude, as the sun moves through the sky.
  • Another point of reference that is used in the bees’ language is gravity. Gravity is a constant that does not change, meaning all bees know which direction is “up” and which is “down”. This also means they can use a vertical, perpendicular line as a standard zero-point.

By pairing the two global constants, gravity and the location of the sun, the bees can accurately signal to other bees the direction they should fly in to find the food source. If a bee does a waggle dance that points 60° right from the vertical “up” direction (as defined by gravity), it signals that the bees should fly 60° right from the direction of the sun. If the angle is 0°, the bees should fly directly towards the sun, and if the angle is 180°, the bees should fly directly away from the sun. The bees use their internal clock to calibrate the direction depending on the time of the day.

The straight line “waggle” part of the dance gives the information of distance. The longer the duration of the straight line, the further away the flower is. As a general rule of thumb, the duration of the straight line increases by 1 second for every 1 kilometre. When the food is within about 60m of the hive, the 8-shape waggle dance turns into an O-shape round dance. The bee deduces the distance by the energy required to fly to the location.

By encoding the two variables “direction” and “distance”, a bee can effectively use the waggle dance to accurately pinpoint the location of a food source. It is amazing to see that animals that we consider “primitive” such as bees have such an intricate method of communication.

image

(Image source: http://aireona93.deviantart.com/art/YAY-Waggle-Dance-146361214?q=boost%3Apopular%20waggle%20dance&qo=1)

Posted in Science & Nature

Caesarean Section

(To read about how babies are made and born, read the From Cell to Birth miniseries! https://jineralknowledge.com/tag/arkrepro/?order=asc)

Most animals give birth through a female’s vagina. Of course humans are the same when it comes to natural birth, but nowadays, it is not uncommon to find women wanting a caesarean instead of the traditional method. A caesarean (also called C-section) is a surgical procedure where the fetus is taken out by cutting through the lower abdomen into the uterus. The history of caesareans is quite dark. Back in the old days when medicine was not advanced, caesareans were mostly used to rescue fetuses from mothers who had died during childbirth. The first record of a successful caesarean where the mother survived dates back to the 1500s. Many people believe the word “caesarean” came from the Roman emperor Julius Caesar, who was allegedly born via a caesarean. However, it was rare for caesareans to be performed in Roman times and even if they were, the mothers almost certainly died in the process. Given that his mother was alive and healthy well into his adulthood, it is highly unlikely that Caesar was born by caesarean (there are no concrete records of it either).

There is much debate to whether a caesarean is better or worse than natural birth (except in emergency situations where a caesarean is required). According to research (in cases without known risks to the fetus), the mortality rate is definitely higher in babies born by caesarean compared to those born naturally. This is most likely due to a caesarean bypassing some of the physiological changes that occur during vaginal birth.

Another debate is about the use of general versus regional anaesthesia (spinal block) when doing a caesarean. A fascinating fact about childbirth is that when a baby is born, it cries to expand its lungs but then quietens down for about an hour (unless it is in pain or there is some stimuli). This is possibly a mechanism to allow bonding between the mother and baby. New mothers often remember the moments following the birth of the child as extremely emotional and blissful. Contrastingly, mothers who are under general anaesthesia and not awake when their child is born bond less with the baby initially (some mothers do not even recognise the baby as their own). Thus, unless it is an emergency caesarean, a spinal block (which allows the mother to be awake and painless) is preferable over general anaesthesia.

Lastly, it is common tradition to cut the umbilical cord straight after the child is born. But is this okay? When the fetus is in the uterus, it shares its cardiovascular system with the placenta. The umbilical cord connects the two and carries blood to and fro. At any given point, the placenta contains 30~50% of the fetal blood. If the umbilical cord is suddenly cut, the fetus essentially loses this blood, being born in a state of low blood volume. If you look at the umbilical cord, you can see that it is about 1m in length, which is enough for the baby to be put next to the mother’s breasts for breastfeeding and bonding. Perhaps we are cutting the cord too soon, not letting the blood flow back from the placenta to the fetus.

If you think about it, humanity has been giving birth without too many problems to survive generation after generation for 200,000 years (otherwise we would not exist). Although the mortality rate was high, Mother Nature has optimised childbirth over time through evolution. Ergo, it is possible that modern medicine is intervening too much in a natural process. We must always consider whether medical advances are helpful or harmful to us.

image

Posted in Psychology & Medicine

Overpopulation

In 1972, John B. Calhoun designed a very specific mice cage called Universe 25, also known as the Mortality-Inhibiting Environment for Mice. Universe 25 was designed as a practical utopia for mice. It was constantly replenished with food and water, each wall had an intricate grid of nesting boxes connected by mesh tunnels and stairwells (like an apartment) and the cage was cleaned periodically. There were no predators, the temperature was set at a comfortable level and all mice resident were disease-free. In all ways, Universe 25 was an idyllic home for the mice.

Calhoun’s aim of this experiment was the same as the countless experiments before Universe 25: to see the effects of abundance on a population, and the consequences of that. Biologically speaking, a population only grows to the point that the environment can sustain it and then plateaus. So if the environment is completely abundant, the population will grow and grow without limitations (other than space). Thus, Calhoun’s main focus was overpopulation in societies. What did he find?

At the start of the experiment, four breeding pairs of mice were introduced to Universe 25. They began reproducing after 104 days of familiarisation and the population increased exponentially. The mice flourished in the prosperous environment. Around day 315, population growth slowed. By this stage, the mice population had grown to over 600, which made Universe 25 very crowded. Although there were still plenty of resources, the problem of overpopulation still remained. As the population grew and space became limited, male mice found it too difficult to defend their territory and eventually gave up doing so. The mice began losing their ability to form social bonds and these mice (“failures”) began congregating at the centre of the cage. This group of mice gave up on all normal social behaviour, leading to constant violence. The violence soon spread throughout the cage, with the mice society descending into chaos. The females, stressed and confused by the violence, attacked and cannibalised their own young, after which they retreated to the highest nest boxes where they isolated themselves. Certain males (termed “the beautiful ones” by Calhoun) did not show violence or any interest in females, choosing only to eat, sleep and groom themselves, wrapped in narcissistic introspection. Because of these two isolated groups, procreation slumped and population growth slowed. Elsewhere, in the “inner city” group at the middle of the cage, cannibalism, pansexualism and violence became common. The entire society had collapsed.

On day 560, the population ceased to grow at a peak population of 2200. After this, the number of pregnancies dwindled to nothing and no young survived past infancy. Adult mice were also affected, with mortality rates skyrocketing at all ages and increased rates of diseases. It was clear that the population was headed towards extinction. Even after the population dwindled down to a much more sustainable number, the mice were incapable of (or chose not to) reproducing to regenerate the population. Not only did mice society die, but the mice themselves met a grim fate as well.

This result was repeated in all of Calhoun’s experiments, conclusively showing that overpopulation leads to the demise of a society. Calhoun described this as “crowding into the behavioural sink”. He explained that the mice served as a warning to what human societies are headed towards if we do not solve the problem of overpopulation. We can already see the effect overpopulation has on societies. It is a known fact that people living in the inner areas of a city are more prone to poverty, crime, violence and a lower quality of life. However, Calhoun was not a nihilist. Instead of saying “humanity is doomed”, he explored different ways of resolving the problem. The most effective idea he came up with was space colonisation.