Posted in Science & Nature

Thuder And Lightning

The best or worst part (depending on your preference) about a dark and stormy night are the majestic flashes of lightning and booming thunder. Most people confuse the two terms, typically using “thunder” to describe both, but technically thunder is the sound produced by lightning, which is the flash of light. Lightning occurs when dense clouds become electrically charged due to the collision of water molecules. As charge builds up, the cloud becomes negatively charged. The negative charge becomes so intense that it begins to push electrons towards the surface of the Earth, creating a positive charge. Electricity always flows from a negative charge to a positive charge through a medium. The intensity of charges causes the air to become ionized (plasma), making it suddenly conductive and allowing the electricity to flow from the cloud to the ground. This is seen as a flash of intense light. As the electricity travels through this channel of air, it superheats the air and causes a massive expansion of air, much like an explosion. This creates an intense shockwave burst, producing a sound that we call thunder.

Lightning is a deadly force of nature. It clocks a peak voltage of somewhere between 30 million to billions of volts – far exceeding the electricity that can be generated by humans. When a lightning bolt strikes a human, it has a mortality rate of between 10~30%. The two effects of lightning on the human body is electrical shock and heat. As lightning flashes over the skin to reach the ground, it leaves a striking pattern known as Lichtenberg figures (see below), showing the path of the electrical breakdown. The intense electrical burst can cause loss of consciousness, arrhythmia or sudden cardiac arrest. The heat generated by the electricity can cause severe burns both externally and internally. It can literally fry internal organs causing permanent damage to the heart, lungs and brain. Neurological symptoms such as amnesia, confusion, sleep disturbance and chronic pain have also been reported. Strangely, there are also reported cases of lightning curing ailments such as blindness, deafness and baldness.

image

Because lightning is light and thunder is sound, one can calculate how far away lightning struck using the time between the lightning flash and the sound of thunder. Sound travels at 340m/s, so by multiplying the number of seconds between the lightning and thunder by 340, you can deduce the distance in metres. For example, if you see a lightning strike and then hear thunder after 7 seconds, the lightning must have struck 340m x 7s = 2380m = 2.38km away.

image

Posted in Psychology & Medicine

Yawn

Yawning is a reflex that we usually associate with tiredness or boredom. When we feel quite sleepy or feel that it is bedtime, we will involuntarily take a deep breath in and stretch our muscles. It used to be believed that yawning is the brain’s response to lack of oxygen, which seems logical as we take a deep breath in during a yawn. However, studies have shown that yawning actually decreases the level of oxygen in the brain. The reason for yawning is still a mystery, but there are many theories suggesting that it cools the brain or to keep the muscles stretched and ready. It may even be a primitive reflex designed to display dominance and signal that they are not threatened by an incoming danger.

An interesting thing about yawning is that it is extremely contagious. It is thought that yawn contagiousness serves a social purpose. Our brains contain certain types of neurons called mirror neurons, that are responsible for copying an action that we see (hence the proverb “monkey see, monkey do”). It has been suggested that by copying the yawn of another member in the group, a sense of camaraderie is established, acting as a social lubricant (much like mirroring to build rapport). The contagiousness is surprisingly strong, even working when you see a video of a person yawning or even reading about yawning. It spreads to animals as well, such as other primates (e.g. monkeys, apes) and dogs. Interestingly, autistic children are less likely to yawn when someone nearby yawns, suggesting that there is indeed a social element to yawning.

Posted in Psychology & Medicine

Viscera: Brain

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

(NB: I have written MANY ARK posts about the brain and all the delightful ways it screws up. Some of them are probably the most interesting posts on my blog. Please click the hyperlinks to check out the various related articles! 😀 Alternatively, here’s a convenient list: https://jineralknowledge.com/tag/brain/?order=asc)

Among the many organs of the human body, no organ comes close to the magnificent complexity that is the brain. The brain acts as the command centre of the body. It receives massive amounts of information through the various senses, processes it and sends out electrical signals to control how the body operates. Not only does it control “basic” functions such as movement of muscles, controlling organ functions and regulating homeostasis, it is also responsible for the so-called “higher functions” such as consciousness, emotions and cognition. It is the true seat of the mind and soul.

image

The brain is the only major visceral organ not located in the trunk (body). It is enclosed in the cranium of the skull, which acts as a protective casing. Because it is a closed box, even a small increase in volume (such as due to a bleed or a tumour) can cause extreme pressures to build, causing severe problems. The entire brain and spinal cord are bathed in a fluid called cerebrospinal fluid (CSF), all enclosed by a sheath made of three layers (dura, arachnoid and pia maters). The brain sends out nerves to the rest of the body, which act as electrical wiring transmitting signals. These include the cranial nerves and the spinal cord, which leaves the bottom of the skull down the spine. The spinal cord branches off into many nerves that supply every nook and cranny of the body. The brain itself is made up of two large hemispheres, which are connected by a bridge called the corpus callosum. Despite popular belief, the actions of the two hemispheres are much more complicated than “analytical vs. creative”. The brain also encompasses the cerebellum (the small stripey structure at the back), which controls coordination and speech articulation, and the brainstem, which is involved in autonomic control of life-sustaining functions such as breathing, and also the source of the cranial nerves.

In the last century, scientists have learned that specific parts of the brain play a specific role. This thought started with the field of phrenology, where small areas of the brain were mapped to a certain mental faculty, such as love, wit or destructiveness. Although this turned out to be complete hokum, the idea stayed and we now know the actual functions of each part of the brain. The brain is broadly divided into four lobes: frontal, parietal, temporal and occipital. The frontal lobe is the domain of thought, personality, motor function and other higher functions. The parietal lobe is related to spatial awareness and sensory functions (such as touch). The temporal lobe is linked to hearing, comprehension of language and storing new memories. The occipital lobe is primarily associated with vision. The brain can then be subdivided into more focussed areas, such as Broca’s area that governs speech and Wernicke’s area that governs listening. It should be noted that the four lobes only describe areas on the surface of the brain (cerebral cortex) where the higher functions belong. The inside of the brain is just as complicated and has many different parts, such as the hypothalamus that is involved in homeostasis, and the hippocampus that converts short-term memories into long-term memories.

How does a lump of cells weighing around 1.5kg produce such wondrous abilities such as philosophical thought, deduction, emotions and calculation? The truth is that we still do not know how the brain functions exactly. However, we know that the brain is composed of a large number of neurons (nerve cells) – about 100 billion of them. These neurons connect to one another via a synapse, which is a gap between two nerve cells where neurotransmitters travel to and fro (allowing electrical impulses to jump from one neuron to another). Using these connections, neurons form an unbelievably intricate and complex network of electrical activity. Because one neuron can connect to many more others, the number of synapses is estimated to be around 100~1000 trillion – significantly more powerful compared to any computer in the world. The number of synapses directly correlates to intelligence and it seems intellectual activities such as reading a book increases the number of synapses in the brain. We have yet to understand exactly how the brain uses this incredible computational power to produce cognition and self-awareness.

image

(Video of neuronal activities in a zebrafish brain)

Because the brain uses electrical impulses for most of its functions, a common abnormality that is seen with the brain is when the electrical activity becomes disorganised and out of control – a seizure. This abnormal electrical activity may be due to a focal problem such as a tumour, or a generalised misfiring of neurons or altered regulation of electrical activity. When a seizure happens, the disorganised activity results in the brain not being able to function normally. For example, the most common consequence is a fit (tonic-clonic seizure) where every muscle spasms out of control, because the muscles are overloaded with chaotic signals. Focal seizures can cause fascinating symptoms depending on the location, such as temporal lobe seizures causing religious visions (hallucination). This also disrupts consciousness, which is why most epilepsy patients do not remember the event.

image
Posted in Psychology & Medicine

Viscera: Small Intestine

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

Abdominal organs are often grouped into the colloquial term gut. “Gut” also refers to a specific organ – the small intestine (or small bowel). It is an important part of the gastrointestinal (digestive) tract, connecting the stomach to the colon and involved in digesting and absorbing nutrients. The small intestine is extremely long, roughly 7m in an adult. It fits in the abdomen by folding and packing neatly, lying under the liver, stomach and pancreas while being framed by the large intestine. The small intestine is not freely hanging so you cannot just pull it out like a rope. It is connected to the body by a fan-like membrane called the mesentery, which provides blood supply to the gut. The mesentery is attached along one side of the gut the entire way through.

The small bowel is composed of three parts: the duodenum, jejunum and ileum. Although people think digestion mainly happens in the stomach, it is actually primarily performed in the duodenum. The duodenum not only receives liquefied food from the stomach, but is also the place where the pancreas and liver drain digestive juices such as pancreatic enzymes and bile. The enzymes breakdown large molecules like fat, protein and carbohydrates into smaller building blocks, while bile acts like detergent to allow fat to mix better with water (emulsification).

The digested food then travels down the GI tract through a process called peristalsis, where the gut squeezes behind the bolus of food to push it forward, much like squeezing toothpaste out of the tube. The broken down products are mainly absorbed in the second part of the bowel (jejunum) via the walls. The small bowel wall looks like a carpet due to microscopic finger-like projections called villi. Villi allow for a much greater surface area for enhanced absorption. In coeliac disease, these villi are flattened by an autoimmune process and the patient cannot absorb as much nutrients (including vitamins).

By the time the food reaches the ileum, most of the nutrients have been absorbed. The ileum finishes the job by absorbing some extra things like vitamin B12 and bile salts, then sends the food through the ileocoecal valve, which is the door between the small and large intestine.

The small bowel is used by various cultures for culinary purposes. Other than simply eating the bowel itself after cooking, it is often used to pack different meats or other food inside, such as sausages or soondae (Korean sausages, filled with chop sui noodles).

Posted in Psychology & Medicine

Viscera: Thyroid

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

There lies a small, butterfly-shaped organ called the thyroid gland in your neck, just in front of your windpipe above the clavicles. The thyroid may not seem important given its small size, but it has the important function of controlling the body’s rate of metabolism. Metabolism is a group of chemical reactions your body relies on to function as a lifeform. Chemicals such as glucose are processed by various enzymes – biological catalysts that encourage chemical reactions – and converted in to fuel (such as ATP) that cells can use for numerous bodily functions. The thyroid produces the thyroid hormones, thyroxine and triiodothyronine, to fine-tune the rate at which these reactions occur.

image

To see the function of the thyroid gland, we can look at two types of diseases: hyperthyroidism and hypothyroidism.

In hyperthyroidism, the thyroid is overactive and produces too much thyroxine. This causes the body’s metabolic rate to speed up, causing increased heart rate, weight loss, sweating, tremors and sensitivity to heat. Depending on the cause, the eyes may be affected as well, causing them to protrude forwards, giving a rather scary appearance. This disease may happen for various reasons, but the most common cause is Grave’s disease, where antibodies lock on to receptors in the thyroid to stimulate thyroxine production, much like a stuck key on a keyboard.

image

Hypothyroidism is the direct opposite syndrome caused by an underactive thyroid. This causes a reduction in metabolic rate, leading to weight gain, tiredness (due to lack of energy), slow heart rate and cold intolerance. It can also be caused by an autoimmune disorder (called Hashimoto’s thyroiditis), or more commonly due to iodine deficiency, as the thyroid uses up iodine to produce thyroid hormones.

Both diseases may cause the thyroid to grow to an abnormal size, which is called goitre (seen as a large neck lump). The treatment is usually adjusting the total level of thyroid hormone produced by removing parts of or all of the thyroid, or replacing thyroid hormone if needed via medication.

image

Because the thyroid uses iodine to make hormones, thyroid diseases such as thyroid cancer can be treated using an interesting method. If you inject radioactive iodine into the patient, it will make its way to the thyroid gland, which actively collects the iodine from the blood. Overactive thyroid tissue (such as in Grave’s or thyroid cancer) take up iodine at a faster rate. The iodine then delivers a focussed dose of radiation to the thyroid, leaving the other tissues in the body unharmed. This method is used for both first-line treatment of hyperthyroidism and to clean-up remaining cancer cells after thyroid surgery.

image

Posted in Psychology & Medicine

Viscera: Kidneys

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

Despite being a vital organ that one cannot survive without, the kidneys are not very famous to the general populace. Not many people know what the kidneys do, let alone where exactly they lie in the body. The kidneys (of which there are two) are the major excretory organs of the human body. They are found in the back of the abdomen (in an area called the retroperitoneal space), tucked under the lower three ribs below the diaphragm. This is higher than where most people think the kidneys lie, because the abdomen extends quite high into the ribcage, as seen from the location of the liver.

image

The kidneys undertake many functions, but they can broadly be grouped into three groups: making urine, filtering blood and maintaining homeostasis.

Although the organ associated with urine is the bladder, it only stores urine, which is made by the kidneys and sent to the bladder via the ureters. Urine is the body’s main way of disposing excess water, salt and other byproducts such as urea. The kidneys fine-tune how much water we lose to urine depending on how much water is in the body. For example, if you drink a lot of water, the kidney senses the blood vessels being dilated and the blood being diluted, then allows more water to leave the body. Conversely, if you are dehydrated, the kidney does everything in its power to hold on to as much water as possible, resulting in concentrated urine.

The kidneys literally act as filters for the blood using a fine, intricate network of sieve-like blood vessels. These vessels have walls that have various sized holes that causes water and small molecules to pass into the kidney, while leaving large proteins in the blood. The filtered blood (containing water, various electrolytes and other metabolites) travel through a pipe network called nephrons, which reabsorb things the body needs (like water when you are dehydrated or salts like sodium), while leaving toxic products like urea and various medications.

image

Lastly, the kidneys maintain homeostasis (the status quo of the body) in various ways, such as fine-tuning the water and salt levels of the body. If you have renal failure where your kidneys do not function properly, you will retain too much water and may suffer a build-up of potassium, which can cause fatal changes in your heart rhythm. It is also involved in controlling the acidity of your blood and your blood pressure, through very complex mechanisms.

One way kidneys are famous is that they are popularly mentioned in the context of organ transplants. If you have renal failure, you may be able to get a kidney from a healthy, live donor as you can live with one kidney. When you take out a kidney from a healthy person, the remaining kidney will grow in size to compensate for the other kidney, while the transplanted kidney will go on to save the patient’s life by doing the many jobs mentioned above.

image

Posted in Psychology & Medicine

Viscera: Pancreas

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

The pancreas is probably the most central organ in the human body. It is situated just under the liver and stomach, surrounded by the duodenum (first part of small intestine) and lies in front of the aorta. It is shaped like a fish and thus is divided into parts named the head, neck, body and tail. The head of the pancreas tucks into the loop of duodenum and drains its contents via the pancreatic duct, which joins with the common bile duct (from the liver and gallbladder).

image

The function of the pancreas is divided into two functions: exocrine and endocrine.

An exocrine gland is an organ that excretes its products out of the body (including the intestines), such as the salivary or tear glands. The exocrine function of the pancreas is the production and secretion of digestive enzymes that break down proteins, fats and carbohydrates in the small intestine. Because of this, injury to the pancreas often causes a leak of this digestive juice, causing the body to self-digest the pancreas (leading to pancreatitis) and surrounding organs.

An endocrine gland is the opposite in that it secretes its contents into the bloodstream. These glands typically produce hormones, such as the thyroid, ovaries and adrenal glands. The pancreas’ endocrine function is related to an extremely common yet deadly disease: diabetes. Within the pancreas, there are millions of cells that cluster into groups called islets of Langerhans. There are various types of cells, but the most common are the alpha-islet cells that secrete glucagon and beta-islet cells that secrete insulin. Insulin acts to lower blood sugar (glucose) levels by promoting storage and use of glucose after a meal. Glucagon acts to increase blood glucose by promoting the breakdown of glucose storage units (glycogen) and the production of more glucose by the liver. Diabetes occurs when beta-islet cells fail to produce insulin because they are destroyed by the immune system (type 1 diabetes mellitus) or become desensitised by chronically elevated blood glucose levels (type 2 diabetes mellitus).

Another important disease concerning the pancreas is pancreatic cancer. Pancreatic cancer is notorious for its deadliness as it carries a 5-year mortality rate of over 95%. This is because it usually remains hidden – without any symptoms – until it as grown substantially and spread to other organs. However, this prognosis only applies to the most common type of pancreatic cancer involving exocrine cells (adenocarcinoma). There are far rarer cancers of the pancreas that involve the endocrine cells (e.g. insulinoma), which tend to have extremely good prognoses and are usually curable.

Steve Jobs (founder of Apple Inc.) had this kind of pancreatic cancer – an islet cell neuroendocrine tumour. Despite his excellent chance of cure with chemotherapy and surgery, he refused treatment for nine months and instead relied on alternative medicine for cure. However, his disease worsened and he finally resorted to having surgery. By this stage, his disease had spread to the liver due to the nine-month delay in treatment. Spreading of cancer is called metastasis and is often an indication that the cancer is no longer curable. Jobs went against his doctors’ advice and opted for a liver transplant in the hopes of curing his cancer. Organ transplant involves suppressing the patient’s immune system (which also keeps cancers in check) to prevent rejection of the donor organ, which is why oncologists advise against transplants in cancer patients. Jobs’ condition deteriorated quickly after his liver transplant and his decisions ultimately led to his demise.

image

Posted in Psychology & Medicine

Viscera: Spleen

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

The spleen is one of the lesser known organs of the human body. If you asked the lay person, they would not know what the spleen does, let alone where it is. The spleen is a solid organ that lies in the left upper corner of the abdomen, tucked under the left diaphragm (opposite to the liver which lies under the right diaphragm). Its functions are mainly related to blood, such as removing old red blood cells (sequestration), storing platelets in case there is an emergency bleeding, making antibodies and releasing lymphocytes (type of white blood cell) to help fight infection and in times of need, creating red blood cells. Red blood cells are usually made in bone marrow in adults, but if the bone marrow fails (e.g. leukaemia), the spleen and liver can step in to create vital blood components (extramedullary haematopoiesis).

As most of the functions of the spleen are not technically necessary to sustain life, it can be removed without significant consequences. The spleen is sometimes removed when a patient has severe thrombocytopaenia (lack of platelets) or when the spleen is damaged by trauma. Because it is a solid organ, trauma to it such as a kick to the stomach can cause it to rupture (i.e. break in to pieces). Splenic rupture can cause life-threatening haemorrhage (bleeding) and may not be evident in trauma cases. A person without a spleen needs regular check-ups and immunisations to help fight infections as they have a weakened immune system.

The role of the spleen was a mystery for thousands of years and thus various cultures tried to explain various medical phenomena using the spleen. The ancient Greeks thought the spleen produced black bile, which was associated with melancholy. The spleen was also associated to anger by the English and laughter by the Talmud.

Posted in Psychology & Medicine

Viscera: Lungs

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

Everyone knows that we need oxygen to survive. The way we get oxygen from the atmosphere is through our lungs – the organ where gas exchange takes place. The pair of lungs take up a large proportion of the chest cavity and they link up with each other to form the trachea (windpipe). The left lung is slightly smaller to accommodate for the heart.

The lung is extremely soft and light, so much that it floats on water. It is essentially made up of an intricate tree-like system of airways, which become narrower and narrower as it divides out from the trachea. Since every airway divides up, the number of airways increases exponentially. Every bronchiole (small airways) ends in a bubble-like sac called an alveolus. Because of the sheer number of alveoli, the lungs actually have a total surface area the size of a tennis court. To picture this, scrunch up a piece of newspaper into a ball to pack a large surface area into a small space. The massive surface area allows for enough gas exchange to occur to give us the oxygen we need and excrete all the carbon dioxide we produce.

image

When we take a breath in, the chest cavity expands and stretches the lungs in all directions because of the negative pressure (like a vacuum). Air fills the airways all the way to the alveoli. The alveoli are extremely thin; so thin that the oxygen in the air effortlessly seeps through into the blood vessels that surround the alveoli. On the other hand, carbon dioxide seeps out of the blood into the alveoli, which is then breathed out as the muscles of your ribcage contract to force the air out. This process is called gas exchange and is driven by diffusion – the movement of particles from an area of high concentration to an area of low concentration (like how dye spreads throughout water).

image

It is well-known that smoking is bad for your lungs. This is because of two major reasons: COPD and lung cancer. COPD (chronic obstructive pulmonary disorder) is when your lungs become so damaged by smoking that they cannot function, leading to hypoxia (lack of oxygen) and hypercapnia (excess of carbon dioxide). Smoking causes inflammation in the lungs, which causes airways to shut down from swelling and mucus, while destroying the fine walls of the alveoli. This causes the alveoli to thicken from scarring and less elastic due to the destruction of elastic tissue. Ultimately, the lungs become hyperinflated as the patient cannot breathe out air properly and the lungs are not elastic enough to return to their original shape and size. Ergo, the patient becomes progressively breathless, gasping for breath as they suffer a sensation of impending death as the carbon dioxide level builds and the oxygen level falls.

Posted in Psychology & Medicine

Viscera: Liver

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

The liver is the second largest organ (next to the skin) in the human body, weighing about 1.4~1.6kg. It is found tucked under the right side of the ribcage, underneath the 5th to 10th rib in height and almost spanning the entire width of the trunk. When enlarged, the liver grows downward and can be felt in an abdominal exam (sometimes it is so large that it covers most of the abdomen).

It is a vital organ with many life-sustaining functions (hence “liver”) such as building various proteins, breaking down toxins, storing sugars in the form of glycogen, decomposing red blood cells and producing bile. The liver metabolises (breaks down) a large proportion of medications and drugs as it treats them as “toxins”. For example, the enzyme alcohol dehydrogenase breaks down alcohols into acetaldehyde, which causes hangovers and liver damage. Many Asians have a variant of this enzyme that is extremely efficient, causing a massive build-up of acetaldehyde when they drink alcohol. This is responsible for the so-called “Asian flush”.

Liver disease is associated a myriad of symptoms. The classic sign of jaundice (yellow skin and whites of eyes) is caused by obstruction of bile flow. Because of its location, pain in the right upper quadrant of the abdomen is commonly seen. As the liver is involved in synthesising various proteins, signs such as ascites (fluid in the abdomen) or bleeding may occur when the liver is damaged. A syndrome called portal hypertension is commonly seen in chronic liver disease such as cirrhosis as a major vein to the liver is blocked. This can cause an enlarged spleen, oesophageal varices that can bleed, ascites and prominent veins radiating from the belly button (caput medusae).

An interesting property of the liver is that it can regenerate at an amazing rate. A liver will regenerate to its original size even when a half of it is cut out (this is how live donor liver transplants work). What is more interesting is that the ancient Greeks probably knew of this fact as well. In Greek mythology, the gods punish Prometheus for bringing fire to humans by chaining him to a mountain and commanding an eagle to peck out his liver. The liver would then regenerate overnight and the eagle would return every morning to eviscerate him, causing him eternal anguish.

image