Posted in Science & Nature

Sonic Boom

When something moves through the air, it pushes the air in front and creates a sound. This sound spreads as a wave at the speed of 340m/s (1225km/h). As the object moves, it makes a series of pressure waves, which is why the Doppler effect happens. These pressure waves look like rings that are squashed to the side the object is moving towards. As the object moves faster, the more compressed these rings become. When the object moves at the speed of sound (340m/s), the pressure waves all overlap as the object makes a pressure wave on the same place as where the last wave reached. This is the sound barrier.

At this point, there is so much overlap of the waves that a shockwave is formed. This shockwave – made of compressed air – travels at the speed of sound (Mach 1) and originates from the front tip of the object (e.g. nose of the plane). If the object moves any faster than the speed of sound, the new wave is made even before the old wave has propagated that far. The rings are now no longer in a nice concentric pattern, but instead form a shockwave cone. Sometimes this can be seen physically if there is enough condensation in the air to create a vapour cone. The sudden change of pressure from the shockwave creates a large booming sound, which we call a sonic boom (in fact, there are two booms due to the pressure difference at the tail too).

Sound, like other waves, is a form of energy. Hence, the shockwave formed by breaking the sound barrier can cause physical damage. If a fighter jet were to fly over a building at low altitude at supersonic speeds, it may cause windows to shatter and people’s eardrums to rupture. The shockwave creates a significant problem in aircraft design, for if a plane’s wingspan is wider than the width of the shockwave cone, its wings will snap off. This is why fighter jets and the Concorde have a characteristic sleek, triangular shape. The faster the plane travels, the narrower the shockwave cone becomes and the thinner the plane’s wingspan has to be.

Then what was the first manmade object to break the sound barrier? The answer is surprisingly old and simple – a bullwhip. The crack from a whip is actually a small sonic boom made by the tip of the whip travelling beyond the speed of sound.

Posted in History & Literature

Wilhelm Scream

Often while watching a movie, you hear a scream that you feel like you have heard it before. This phenomenon occurs quite commonly, and the reason for it is rather simple. It is not because of some psychological phenomena, but because it is always the same scream. But how is it that the same scream appears in movies spanning over 50 years, with no common actors? 

This is the famous Wilhelm Scream, a pre-recorded sound clip frequently used in movie sound editing. It first appeared in the 1951 film “Distant Drums” (when a villain is snatched away by an alligator), and became famous when it was used again in 1953 in “The Charge at Feather River”, when a soldier named Wilhelm gives off the scream when shot (hence the name).

From then on, this scream has become somewhat a cliché in the film world, with numerous directors humorously sneaking it in their movie. George Lucas is especially well-known for his love with the sound clip, as he used it in every Star Wars and Indiana Jones movie. Including appearances in movies, games and other media, the Wilhelm Scream has been used over 200 times to date. This peculiar scream tends to be used when a nameless villain, such as a stormtrooper or a Nazi soldier, is shot, fell or somehow mortally harmed.

Next time you watch a film, look out for the Wilhelm Scream.