Posted in Psychology & Medicine


A person’s body temperature is always maintained between 36.5~37.5°C. This is because enzymes, which are crucial in all physiological reactions in the body, work most efficiently at this temperature. As physiology is essentially a series of chemical reactions, it is heavily dependent on temperature. If the temperature falls, chemical reactions occur slower and vice versa. When body temperature falls below 35°C, metabolism becomes too slow and it poses a risk to the person’s health. This is known as hypothermia.

How does hypothermia affect the body? Hypothermia is categorised into three classes depending on the severity.

  • Mild hypothermia (32~35°C) leads to the slowing of bodily functions, tremors and difficulty in walking. The patient’s speech is impeded and other neurological symptoms such as decreased judgement skills and confusion start to appear. Also, blood pressure, pulse and breathing rate rise.
  • Moderate hypothermia (28~32°C) causes paralysis of muscles and extreme fatigue (they may complain of being sleepy). As blood (carrying heat) is rerouted to major organs, the skin (especially lips and extremities) become white or purple and very cold. Neurological symptoms worsen with amnesia, memory loss, severe confusion and delusion beginning to show. As sustained hypothermia leads to the tremors stopping, one should not take the lack of tremors as a good sign. Heart rate becomes irregular and arrhythmia may occur.
  • Severe hypothermia (20~28°C) leads to chemical reactions becoming so slowed that physiological functions that support life decline dramatically. Heart rate, blood pressure and breathing all lower to dangerous levels and the heart and lungs may stop functioning. As the patient’s major organs begin to shut down, they enter a state of unconsciousness and eventually, clinical death.

As you can see, hypothermia is a highly dangerous situation that can kill. There are some other fascinating facts about hypothermia.

20~50% of hypothermia death cases are associated with paradoxical undressing. This is a strange phenomenon where the person begins to take off their clothes due to confusion and a lack of judgement from the hypothermia. One theory suggests it is related to the cold damaging the hypothalamus (which controls body temperature), causing the brain to think that the body temperature is rising. Whatever the reason, it is extremely dangerous as it worsens the hypothermia.

As explained above, severe hypothermia leads to death. But interestingly, hypothermia also protects organs. This is why organs for transplanting are transported in ice. Similarly, there are examples of people who “died” from hypothermia recovering with no brain damage. Because of this, medical professionals traditionally say: “they’re not dead until they’re warm and dead”. In fact, if there is something wrong with the patient’s circulation and there is risk of damage to their organs (such as in surgery), sometimes the patient’s body temperature is forced down with ice water injections and cooling blankets, known as protective hypothermia.


Posted in Psychology & Medicine

Bystander Effect

March 13, 1964 – Queens, New York. A young woman called Kitty Genovese was running from a man chasing her across the parking lot. She screamed for help as she ran from the attacker but not a single person came to her rescue. The attacker stabbed her repeatedly but the police were never alerted to the incident. The astonishing fact is that not only was there someone watching the whole attack – completely able to call the police or intervene – but there were no less than 38 bystanders.

This case sparked a question in social psychology: what prevented those 38 people from stopping a murder happening in front of them? Was it fear of attracting the assaulter’s attention? The bystanders were all watching from their apartment and calling the police would have been simple and discreet, so this was not the reason. Psychologists designed an experiment to study the natural human response as a bystander in an emergency situation.

The experiment was simple: have participants fill a survey in a room and have the helper leave the room. The helper would then stage a collapse with a yell. The participants’ response would then be observed (particularly their response time).
What they found was fascinating. When only one person was in the room, it was very likely he or she would check to see what happened. But with a group (even three would suffice), the response time would dramatically increase, if they responded at all. Simply put: the more bystanders there are, the less likely someone will step in to do something.

The reason is actually simpler than people think. It is not that people are naturally evil and wish to see others suffer; the bystander effect is a consequence of the basic human psyche.
Firstly, people constantly observe others’ responses in a social situation. This creates a paradox where everyone assumes that since no one is doing anything, they themselves do not act either.
Secondly, there is a shared sense of delusion where people think “others will do it”. This is known as “responsibility splitting” and explains why more people lead to less response.
These two factors combined with cognitive dissonance reduce the guilt and burden of the bystander as they consider it alright to not respond as long as no one else does (or if they do, good for them).

Unfortunately, this effect is so powerful that they occur in about 70% of assault cases and also other emergencies such as a person collapsing from a heart attack (i.e. no one rushes to perform CPR). The same effect is seen in cases of suicides (where the person publicly announces their intentions with no one responding) and classrooms (when the teacher asks the class a question).

This is why one of the greatest tips for emergency response is to pick a single person out and instruct them to do something. For example, “You there, in the red jacket, call the ambulance” is much more effective than “Somebody do something”.

Posted in Psychology & Medicine


Diabetes is a common and serious disease that is caused by the body being unable to control the blood sugar (glucose) level, leading to severe organ damage. For example, blood vessel damage can lead to blindness, renal failure, heart attacks or strokes. Diabetes is divided into Type 1, caused by the destruction of pancreatic β-cells (that produces insulin) leading to insulin deficiency, and Type 2 diabetes, where insulin resistance renders the hormone useless. Thus, diabetes is a disease related to insulin. So what is insulin?

Insulin is a hormone that lowers blood glucose. It has the important function of controlling blood glucose levels after a meal. Therefore, a diabetes patient has high blood glucose, which has a toxic effect.
As type 1 diabetics cannot produce insulin, they require daily insulin injections. Some type 2 patients also need insulin. But this hormone that saves the lives of diabetics also has a deadly dark side.

Too much insulin leads to hypoglycaemia due to its blood glucose lowering properties. This is the opposite of what happens in diabetes, but is even more dangerous. Although there are in-built autonomic defence mechanisms to prevent this from happening, a high level of insulin can overcome this to cause blood glucose to plummet. 
A hypoglycaemic patient initially suffers cognitive dysfunction, then sweating and tremors. As blood glucose falls further, the patient begins to convulse, until they fall into a coma and eventually die. This is because the brain heavily relies on glucose for its functions, and a disruption of glucose supply causes it to shut down.
Because blood glucose fluctuates much like blood pressure, it is hard to control. This leads to many diabetics accidentally falling into hypoglycaemia, or even losing their lives. Furthermore, insulin is sometimes used by people to cause hypoglycaemia as a means of suicide.

If you see a person convulsing, check around for any hypodermic needles or bottles of insulin. A diabetic patient would have a medic alert bracelet, and if it is a suicide attempt they would have recently injected themselves with insulin. If you think it is hypoglycaemia, you must immediately treat the patient as severe complications can occur in a very short time. The emergency treatment is quite simple – raise the blood glucose. For example, dissolving a spoon of white sugar in the patient’s mouth or making them drink a sugary drink such as apple juice can cause a spike in blood glucose, causing the symptoms to disappear. If their consciousness does not return, you may need to repeat the process until their blood glucose is high enough.

Knowing even a little about insulin and hypoglycaemia may lead to you saving a person’s life someday.


Posted in Psychology & Medicine


CPR stands for cardiopulmonary resuscitation – or in plain English, artificially (and partially) restoring the function of the heart and lungs of an unconscious, pulseless person. As blood flow (perfusion) is critical in the survival of major organs such as the brain, this procedure can save lives by prolonging a victim’s life until the paramedics arrive to provide professional medical care.

When the heart stops beating, or becomes inefficient due to erratic beating, blood flow stops. In the case of the brain, this means that the cells will start dying after 4~5 minutes if perfusion is not restored. CPR can restore about 30% of perfusion, delaying the onset of brain death.

This may be critical when someone suffers a heart attack (myocardial infarction) and paramedics will not arrive for over 10 minutes. Ergo, this is one of the most important emergency skills one should know to help people in need as soon as possible.

There are different guidelines for CPR in many countries, but here is a standard procedure guideline (NZ).
It is summarised into the acronym: DR’S ABCD (doctor’s ABCD), and is a flowchart that goes from one step to the next (detailed explanation after summary).

  1. Danger: check that area is safe and risk-free
  2. Response: check for patient response by shouting, shaking, pain
  3. Send for help: pick one person to call emergency services
  4. Airway: check airway, remove obstruction, tilt head back and lift chin
  5. Breathing: check for breathing, go to CPR if no breathing
  6. Circulation: check for pulse if breathing, if no pulse, start CPR (30 chest compressions : 2 breaths)
  7. (Defibrillation): follow AED instructions

The first rule of first aid is that you must not put yourself in danger. For example, if the patient is on the road, pull them to a safe area to minimise the risk to your own health.

Then, check for a response. The easiest way is to call loudly to them such as “Can you hear me”, and inflicting pain (such as rapping on their chest or shaking their shoulders) and see if they become conscious.

If they remain unconscious, immediately designate a person around you by pointing to them (otherwise they will be less likely to be responsible) to call the emergency service (111, 911, 119 etc.), alerting them the location and state of the patient.

This is the point when clinical skills come in.

Airway: An unconscious person may have their airway obstructed by vomit or their own tongue (which falls back by gravity into the throat). You must secure the airway by scooping out any material, and clearing the tongue out of the way. This is done by tilting the head back far (as if they are looking up), then using one hand to pull their chin out. This opens the airway up so that mouth-to-mouth becomes effective.

Breathing: Put one ear right next to the person’s nose and mouth and check for any breathing sounds or air flow. If they are breathing, check the pulse to see if they are pumping blood. If not, go straight to CPR.

Circulation: It is best to check the central pulses such as the carotid (side of neck, next to the Adam’s apple), brachial (squeeze inner side of biceps) or femoral pulses. The carotid is often the easiest as most people know how to take it. If you feel a pulse, put the patient in recovery position as they are just unconscious, breathing and has blood flowing. If not, proceed to CPR (as you do with when the patient is not breathing).

CPR is composed of two actions: chest compressions and mouth-to-mouth breathing. The former is the strong compression of the chest wall to squeeze blood in and out of the heart; the latter is breathing air into the patient’s lungs and letting exhalation come out naturally.

Chest compressions are often misrepresented in medical dramas, and is extremely important that you do it correctly. First find where the sternum is (centre of ribcage, between the nipples) and place the heel of your left palm on it, then spread your fingers out. Put your right hand over your left and close your fingers around it for a good grip. If the patient is lying flat on the ground (with head tilted back), kneel beside them and stoop over their chest with straight, locked arms (bent arms exert much less pressure).

You are now ready to begin chest compressions. Press down hard, until the chest wall is compressed to about 1/3~½ depth (the chest wall is a springy structure, and do not worry about broken ribs, as being alive is more important for the person), then ease pressure to let it bounce back up. Ideally the time pushing and the time letting it bounce back should be the same, giving a good rhythm. Repeat this 30 times at the beat of 100/min, or in easier terms: to the beats of the Bee Gee’s song Stayin’ Alive (scientifically proven).

After 30 compressions, tilt the patient’s head back, lift their chin up, and lock your mouth over their mouth and nose to make an airtight seal. It is crucial that you use a face shield to prevent the spread of disease. Be aware that breaths are less important than the compressions, so if you do not have a face shield, let someone else do the breathing and focus on chest compressions. Pinch the nose closed to ensure air does not escape.
Forcefully breathe into them and look for the chest rising. Let go of the nose and pull away so that they can breathe out. Repeat once, then return to chest compressions.

After 2 minutes of CPR (30 compressions : 2 breaths, repeat 4 times), change places with another person capable of CPR, as otherwise you will tire out and become inefficient.

Defibrillation is only possible if you are near an AED (automated external defibrillator). Nowadays, AEDs are designed to be completely user-friendly so simply follow the instructions on the machine.

It is important to note that not all abnormal heart rhythms are “shockable” (see Flatline). Follow the AED’s instruction, as it will state whether shock is advised or not. Make sure that CPR is still happening continuously.

Repeat until help arrives.

As a final note, remember that the patient is dead whether you do CPR or not, so there is nothing to lose. Believe it or not, this will be of incredible help in calming your mind when struck with such an emergency. Even with CPR, there is a maximum 30% chance the patient will survive, 10% if it occurs outside the hospital. But if you do nothing, their survival chance will be 0%, so put all your energy into resuscitating them, and you may just save a life.

Posted in History & Literature


Mayday is the universal phrase for requesting emergency assistance in a crisis situation on the sea or in the air. 

It was first created by Frederick Stanley Mockford, who was a senior radio office trying to figure out a simple distress call sign. As he worked at Croydon Airport, London, and dealt with traffic mainly between England and France, he decided on the word mayday, which is derived from the French words venez m’aider, meaning “come help me”.

Another famous distress call is SOS, or  … – – – … in Morse code. It was first used by German radios but then became the worldwide standard in 1906. Although it is often thought to stand for “save our souls”, it is in fact a backronym that was made decades after it came to be. Instead, it was chosen as it is simple to remember (the backronym may have been devised to help people remember the letters) and easy to signal via Morse code. It was most famously used by the RMS Titanic

The reason why mayday was created (and set as a standard in 1927) was due to the need for a spoken word as the audio radio transmitters were developed.