Posted in Psychology & Medicine

Food Coma

Why do we feel sleepy after we eat? There are two components to the so-called “food coma”: neurological and hormonal. When we eat, the food mashed up by your teeth is swallowed down the oesophagus and into the stomach, where it is churned in a vat of very strong hydrochloric acid. The acid dissolves the food into liquid form, which is then sent to the small intestines. Here, the chemical components of the food such as carbohydrates is broken into simpler blocks, such as glucose. This is then absorbed into the bloodstream.

The body can actually sense when you have swallowed food, as your stomach stretches and sends signals to the brain. This triggers the activation of the parasympathetic nervous system (opposite of the sympathetic nervous system, which is the “fight or flight” system). The parasympathetic nervous system is involved in digesting and rest. It stimulates stomach acid production, gut movement and even reduces your energy level so that digestion can happen smoothly. In old people, it can even decrease blood pressure enough to a point that they feel dizzy (much like head rush). This is the neurological component.

The hormonal component is linked with the absorption phase of digestion. To deal with the increasing level of glucose in your blood, the pancreas secretes insulin. Insulin rounds up the glucose in the blood and stores it away in cells to normalise the blood glucose level. In this process, it also stimulates the uptake of certain amino acids (building blocks of protein) into cells. However, it leaves out one type of amino acids called tryptophan. Because there is more tryptophan in the blood compared to the other amino acids, your brain decides to use this to build more proteins. Tryptophan is converted in the brain into a very important neurotransmitter called serotonin, which is then converted into melatonin. Melatonin is a neurotransmitter involved in triggering sleep. Therefore, through this extremely complicated pathway, food causes sleepiness.

At face value, this makes it look like increasing intake of tryptophan may help induce sleep. It is commonly said that turkey meat and bananas help you sleep because of tryptophan. But this is an urban myth as neither of these foods are particularly high in tryptophan and there is no evidence to suggest that tryptophan itself helps you sleep. Then again, melatonin supplements have some evidence supporting it as a sleep aide. This shows just how complicated the human body can be.

Posted in Psychology & Medicine

Viscera: Small Intestine

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

Abdominal organs are often grouped into the colloquial term gut. “Gut” also refers to a specific organ – the small intestine (or small bowel). It is an important part of the gastrointestinal (digestive) tract, connecting the stomach to the colon and involved in digesting and absorbing nutrients. The small intestine is extremely long, roughly 7m in an adult. It fits in the abdomen by folding and packing neatly, lying under the liver, stomach and pancreas while being framed by the large intestine. The small intestine is not freely hanging so you cannot just pull it out like a rope. It is connected to the body by a fan-like membrane called the mesentery, which provides blood supply to the gut. The mesentery is attached along one side of the gut the entire way through.

The small bowel is composed of three parts: the duodenum, jejunum and ileum. Although people think digestion mainly happens in the stomach, it is actually primarily performed in the duodenum. The duodenum not only receives liquefied food from the stomach, but is also the place where the pancreas and liver drain digestive juices such as pancreatic enzymes and bile. The enzymes breakdown large molecules like fat, protein and carbohydrates into smaller building blocks, while bile acts like detergent to allow fat to mix better with water (emulsification).

The digested food then travels down the GI tract through a process called peristalsis, where the gut squeezes behind the bolus of food to push it forward, much like squeezing toothpaste out of the tube. The broken down products are mainly absorbed in the second part of the bowel (jejunum) via the walls. The small bowel wall looks like a carpet due to microscopic finger-like projections called villi. Villi allow for a much greater surface area for enhanced absorption. In coeliac disease, these villi are flattened by an autoimmune process and the patient cannot absorb as much nutrients (including vitamins).

By the time the food reaches the ileum, most of the nutrients have been absorbed. The ileum finishes the job by absorbing some extra things like vitamin B12 and bile salts, then sends the food through the ileocoecal valve, which is the door between the small and large intestine.

The small bowel is used by various cultures for culinary purposes. Other than simply eating the bowel itself after cooking, it is often used to pack different meats or other food inside, such as sausages or soondae (Korean sausages, filled with chop sui noodles).

Posted in Psychology & Medicine

Viscera: Stomach

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

The stomach is an organ that is well-known, so much so that the abdomen is often colloquially referred to as “the stomach”. It is an important organ that is part of the digestive tract, responsible for breaking down food that comes in through the mouth then the oesophagus. The stomach lies centrally and just below the sternum, surrounded by the liver on the right, spleen on the left and pancreas below.

Food is broken down primarily by the mouth via chewing. Once you swallow, the food is squeezed through the oesophagus until it is dumped into the stomach. The stomach produces a very strong acid (hydrochloric acid, pH 1~2), which dissolves the chewed food. It enhances this process by contracting its powerful wall muscles to churn and mix the food. Once it is nicely dissolved into a thick liquid, it releases it into the duodenum (the first part of the small intestine).

If the stomach uses strong acid to breakdown food, which is organic matter, how come it does not digest itself? This is because the lining of the stomach is coated with a substance called mucin which protects the stomach wall from being corroded by acid. However, the stomach is not perfectly safe from the acid it produces. If the stomach becomes inflamed, the production of mucin and self-repair process of the stomach is limited and acid begins dissolving the stomach lining. This causes peptic ulcers to form, which is essentially a hole in the lining of the stomach, causing severe abdominal pain and occasionally bleeding. Peptic ulcers are commonly caused by an infection by a bacteria called Helicobacter pylori. It may also be caused by severe stress and anger or medications such as NSAIDs (non-steroidal anti-inflammatory drugs, e.g. ibuprofen, diclofenac/Voltaren).

Posted in Psychology & Medicine

Viscera: Pancreas

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

The pancreas is probably the most central organ in the human body. It is situated just under the liver and stomach, surrounded by the duodenum (first part of small intestine) and lies in front of the aorta. It is shaped like a fish and thus is divided into parts named the head, neck, body and tail. The head of the pancreas tucks into the loop of duodenum and drains its contents via the pancreatic duct, which joins with the common bile duct (from the liver and gallbladder).

image

The function of the pancreas is divided into two functions: exocrine and endocrine.

An exocrine gland is an organ that excretes its products out of the body (including the intestines), such as the salivary or tear glands. The exocrine function of the pancreas is the production and secretion of digestive enzymes that break down proteins, fats and carbohydrates in the small intestine. Because of this, injury to the pancreas often causes a leak of this digestive juice, causing the body to self-digest the pancreas (leading to pancreatitis) and surrounding organs.

An endocrine gland is the opposite in that it secretes its contents into the bloodstream. These glands typically produce hormones, such as the thyroid, ovaries and adrenal glands. The pancreas’ endocrine function is related to an extremely common yet deadly disease: diabetes. Within the pancreas, there are millions of cells that cluster into groups called islets of Langerhans. There are various types of cells, but the most common are the alpha-islet cells that secrete glucagon and beta-islet cells that secrete insulin. Insulin acts to lower blood sugar (glucose) levels by promoting storage and use of glucose after a meal. Glucagon acts to increase blood glucose by promoting the breakdown of glucose storage units (glycogen) and the production of more glucose by the liver. Diabetes occurs when beta-islet cells fail to produce insulin because they are destroyed by the immune system (type 1 diabetes mellitus) or become desensitised by chronically elevated blood glucose levels (type 2 diabetes mellitus).

Another important disease concerning the pancreas is pancreatic cancer. Pancreatic cancer is notorious for its deadliness as it carries a 5-year mortality rate of over 95%. This is because it usually remains hidden – without any symptoms – until it as grown substantially and spread to other organs. However, this prognosis only applies to the most common type of pancreatic cancer involving exocrine cells (adenocarcinoma). There are far rarer cancers of the pancreas that involve the endocrine cells (e.g. insulinoma), which tend to have extremely good prognoses and are usually curable.

Steve Jobs (founder of Apple Inc.) had this kind of pancreatic cancer – an islet cell neuroendocrine tumour. Despite his excellent chance of cure with chemotherapy and surgery, he refused treatment for nine months and instead relied on alternative medicine for cure. However, his disease worsened and he finally resorted to having surgery. By this stage, his disease had spread to the liver due to the nine-month delay in treatment. Spreading of cancer is called metastasis and is often an indication that the cancer is no longer curable. Jobs went against his doctors’ advice and opted for a liver transplant in the hopes of curing his cancer. Organ transplant involves suppressing the patient’s immune system (which also keeps cancers in check) to prevent rejection of the donor organ, which is why oncologists advise against transplants in cancer patients. Jobs’ condition deteriorated quickly after his liver transplant and his decisions ultimately led to his demise.

image