Posted in History & Literature

The Most Kissed Face In The World

In the late 19th century, it was not uncommon to find a corpse who could not be identified. Such was the case for a young woman who was pulled out of the River Seine in Paris, likely a suicide. Her body was labelled ecadavre feminin inconnu (unknown female cadaver) and as was customary at the time, her body was displayed in a chilled room with a glass window at the morgue, in the hopes that some passer-by would recognise her face and identify her.

At some point, a morgue attendant made a death mask of her face – a wax plaster cast that preserves the face of a corpse before it decomposes. The attendant’s motives are unclear: some stories state that he was entranced by her beauty, but it is also possible that he was trying to better preserve the face for identification. Regardless, the mask became copied many times in the following years and became strangely popular in the artistic world.

The face became famous for its eerie smile, which looks enigmatic yet peaceful, even being compared to the smile of the Mona Lisa. The mask – known as L’Inconnue de la Seine (the unknown woman of the Seine) – became a popular, morbid fixture in the rooms of Parisian Bohemians.

In 1955, a Norwegian toymaker named Asmund Laerdal came across a novel material known as PVC, a soft plastic perfectly suitable for dolls. He found it to be a perfect material for the creation of a new training aid for the newly-invented CPR (cardiopulmonary resuscitation) technique to be taught to those learning first aid. He wanted the mannequin to look as natural as possible. This is when Laerdal remembered a fixture on the wall of his grandparents’ house when he was younger: the L’Inconnue de la Seine. He considered the face to be ideal for the purpose of a resuscitation aide, with its peaceful, non-threatening features.

Thus, the Resusci Anne was created. Resusci Anne is by far the most popular CPR teaching tool used worldwide. It is often said that it is “the most kissed face in the world“, as mouth-to-mouth resuscitation is a feature of CPR.

As charming and morbid the story may be, the story of L’Inconnue de la Seine has never been confirmed. It has only been passed on through history via novels, short stories and artists’ accounts. If you look closely at the face, the story seems less likely to be true, as a drowned corpse will often be much more bloated and disfigured from swelling, with a contorted, tortured face as victims frantically thrash and fight as the body screams for oxygen. The general consensus is that from a pathologist’s point of view, the mask is unlikely to be from a drowned young woman

Irregardless of the origin story of its face, the Resusci Anne has indubitably saved the lives of countless people around the world, by teaching people the important skills of CPR and first aid.

Posted in Psychology & Medicine

Agonal Breathing

When a person is on the verge of death, they may show a very strange pattern of breathing. They will begin gasping for breath, take deep laboured breaths, begin to make strange noises and possibly have some muscle jerks (which may look like a seizure). The breathing makes it look as if the person is taking a deep breath and sighing, while gasping every now and then irregularly. This is called agonal breathing and it is most likely caused by an oxygen-starved brain sending weak signals to try kick up the respiratory drive for more oxygen.

Agonal breathing is not uncommon in cases of cardiac arrest. It is important to note that agonal breathing is not an efficient form of breathing and thus it cannot be said that the victim is “breathing” when this occurs. Because it looks like the patient is taking deep breaths, bystanders may be fooled into thinking that they have been resuscitated and have begun breathing again. But this is not the case and the patient is still clinically dead. Ergo, one should not stop CPR even if the patient begins taking deep breaths and sighs. The presence of agonal breaths usually indicate a better outcome for the patient.

(Link to video examples of what agonal breathing looks like:

Posted in Psychology & Medicine


In the New Testament of the Bible, there is a scene where Jesus resurrects a man by the name of Lazarus back four days after his death. This “miracle” is of course a fictitious event, but nonetheless, the name Lazarus has come to symbolise resurrection after death. For example, there are two actual medical conditions named after Lazarus, both related to death.

The first is called Lazarus phenomenon, where a person who is declared to be clinically dead spontaneously returns to life. This is an extremely rare event that has only been recorded in about 30 cases. In most of these cases, the patients had suffered a cardiac arrest, with all attempts at resuscitation (e.g. CPR, adrenaline) had failed. Sometime after the person was declared clinically dead (usually around 5~10 minutes), the person’s circulatory system would suddenly start on its own and the person would be “resurrected” (quite literally). In one case, a 61 year-old woman was declared officially dead after her heart stopped and her vitals did not return after continuous resuscitation. At the morgue, however, she was found to have a pulse and breathing on her own. She later sued the hospital for the neurological and physical injury caused by oxygen deprivation during her death. There is even a case report of a patient who returned to life two and a half hours after dying (although he died again 3 weeks later).

Of course, the Lazarus phenomenon is not a miracle. In most cases, it is hypothesised that when resuscitation is attempted then stopped, there is a rare chance of the relieving of pressure causing blood to fill the heart, causing a sudden expansion and kickstarting the electrical circuit. Other factors that may influence this is hyperkalaemia resulting from ischaemia and high doses of adrenaline given to the patient during resuscitation having a delayed effect.
Because of this rare “complication” of death, doctors are advised to observe the patient for about 10 minutes after declaring them dead. Just in case.

The second is called Lazarus sign and it occurs not in dead patients, but brain-dead patients. Brain-dead patients are immobile as their higher functions such as cognition and motor functions are destroyed. However, there are rare cases where the brainstem is somehow stimulated, triggering a reflex arc from the spinal cord. This reflex is seen as the patient suddenly raising their arms and dropping them on their chest in a crossed position, much like Egyptian mummies. As the spinal cord is not usually damaged in brain-dead patients, this reflex arc is possible, similar to a knee jerk reflex. The Lazarus sign should not be misinterpreted as a sign that a brain-dead patient is conscious, as it is an involuntary movement. However, it has been mistaken for the resuscitation of a patient, or in some cases, as a miracle.


Posted in Psychology & Medicine


Scrubs is the uniform that surgeons, anaesthetists, emergency department doctors and nurses wear for the freedom and mobility required in activities such as surgery and CPR. Also, since it is owned and washed by the hospital instead of being privately owned, it is more hygienic and helps prevents infections. A noticeable trait of scrubs (and also surgical gowns) is that almost every hospital uses a shade of blue or green instead of white. Why is this?

The reason being, looking at a surgical scene for a long period of time can cause eye fatigue and afterimages due to the redness of blood and organs. Afterimage is a phenomenon that occurs when the retina becomes insensitive to a strong colour and instead making the complementary colour stand out more. Ergo, a surgeon looking at blood and organs for too long will see afterimages of a blue shade, which may cause accidents to happen as it overlaps on white surfaces or the surgical field. Clothing of blue or green colour neutralises the afterimage and is much easier on the eyes, reducing the fatigue. Lastly, blue-green colours have a calming psychological effect, which helps in a high-tension, stressful environment such as in an operating theatre.

Posted in Psychology & Medicine

Sudden Death

Unlike diseases such as tuberculosis or cancer, some disease processes are known to kill a human being within an hour of onset. Other than the obvious causes such as decapitation, massive bleeding or any other trauma-related injuries, these diseases tend to be cardiac or respiratory in origin.

A common example is coronary artery disease, where the blood vessel providing blood to an area of the heart becomes completely blocked by stenosis (narrowing, often by atherosclerosis) or a clot. This results in immediate ischaemia (lack of oxygen) to heart muscles, which causes cell death. This produces scar tissue which disrupts the electrical activity of the heart, which may lead to a condition called ventricular fibrillation where the heart beats in an uncontrolled, erratic manner. When in VF, the heart effectively becomes useless as it cannot coordinate proper pumping function. Blood circulation stops and the patient goes in to multiple organ failure (the brain goes first) within a very short time. Although it can kill within a short time, early identification and treatment may be able to prevent VF from occurring and save the patient’s life. If VF does occur, it is crucial to begin CPR or use a defibrillator if available.

VF can also occur in other situations. For example, there is a genetic condition called long QT syndrome which predisposes the patient to spontaneous arrhythmias (electrical abnormalities in the heart). Even becoming too excited can sometimes set off a VF in some LQTS patients, thus they require an implantable cardioverter-defibrillator (ICD) to shock their heart back in to normal rhythm every time they develop an arrhythmia.

Some other causes of sudden death include: aortic dissection (tearing of the aorta that may cause massive internal bleeding), pulmonary embolism (a clot obstructs blood flow in the lung, stopping circulation), commotio cordis (a blow to the heart at a certain moment in the heart rhythm triggers VF), ruptured brain aneurysm (ballooning of an artery in the brain), anaphylaxis (severe allergic reaction that cuts off airflow to the lungs) and poisoning (various mechanisms, mainly related to disrupting cellular function).

Death can strike swiftly, even from within your body.

Posted in Psychology & Medicine

Bystander Effect

March 13, 1964 – Queens, New York. A young woman called Kitty Genovese was running from a man chasing her across the parking lot. She screamed for help as she ran from the attacker but not a single person came to her rescue. The attacker stabbed her repeatedly but the police were never alerted to the incident. The astonishing fact is that not only was there someone watching the whole attack – completely able to call the police or intervene – but there were no less than 38 bystanders.

This case sparked a question in social psychology: what prevented those 38 people from stopping a murder happening in front of them? Was it fear of attracting the assaulter’s attention? The bystanders were all watching from their apartment and calling the police would have been simple and discreet, so this was not the reason. Psychologists designed an experiment to study the natural human response as a bystander in an emergency situation.

The experiment was simple: have participants fill a survey in a room and have the helper leave the room. The helper would then stage a collapse with a yell. The participants’ response would then be observed (particularly their response time).
What they found was fascinating. When only one person was in the room, it was very likely he or she would check to see what happened. But with a group (even three would suffice), the response time would dramatically increase, if they responded at all. Simply put: the more bystanders there are, the less likely someone will step in to do something.

The reason is actually simpler than people think. It is not that people are naturally evil and wish to see others suffer; the bystander effect is a consequence of the basic human psyche.
Firstly, people constantly observe others’ responses in a social situation. This creates a paradox where everyone assumes that since no one is doing anything, they themselves do not act either.
Secondly, there is a shared sense of delusion where people think “others will do it”. This is known as “responsibility splitting” and explains why more people lead to less response.
These two factors combined with cognitive dissonance reduce the guilt and burden of the bystander as they consider it alright to not respond as long as no one else does (or if they do, good for them).

Unfortunately, this effect is so powerful that they occur in about 70% of assault cases and also other emergencies such as a person collapsing from a heart attack (i.e. no one rushes to perform CPR). The same effect is seen in cases of suicides (where the person publicly announces their intentions with no one responding) and classrooms (when the teacher asks the class a question).

This is why one of the greatest tips for emergency response is to pick a single person out and instruct them to do something. For example, “You there, in the red jacket, call the ambulance” is much more effective than “Somebody do something”.

Posted in Psychology & Medicine


CPR stands for cardiopulmonary resuscitation – or in plain English, artificially (and partially) restoring the function of the heart and lungs of an unconscious, pulseless person. As blood flow (perfusion) is critical in the survival of major organs such as the brain, this procedure can save lives by prolonging a victim’s life until the paramedics arrive to provide professional medical care.

When the heart stops beating, or becomes inefficient due to erratic beating, blood flow stops. In the case of the brain, this means that the cells will start dying after 4~5 minutes if perfusion is not restored. CPR can restore about 30% of perfusion, delaying the onset of brain death.

This may be critical when someone suffers a heart attack (myocardial infarction) and paramedics will not arrive for over 10 minutes. Ergo, this is one of the most important emergency skills one should know to help people in need as soon as possible.

There are different guidelines for CPR in many countries, but here is a standard procedure guideline (NZ).
It is summarised into the acronym: DR’S ABCD (doctor’s ABCD), and is a flowchart that goes from one step to the next (detailed explanation after summary).

  1. Danger: check that area is safe and risk-free
  2. Response: check for patient response by shouting, shaking, pain
  3. Send for help: pick one person to call emergency services
  4. Airway: check airway, remove obstruction, tilt head back and lift chin
  5. Breathing: check for breathing, go to CPR if no breathing
  6. Circulation: check for pulse if breathing, if no pulse, start CPR (30 chest compressions : 2 breaths)
  7. (Defibrillation): follow AED instructions

The first rule of first aid is that you must not put yourself in danger. For example, if the patient is on the road, pull them to a safe area to minimise the risk to your own health.

Then, check for a response. The easiest way is to call loudly to them such as “Can you hear me”, and inflicting pain (such as rapping on their chest or shaking their shoulders) and see if they become conscious.

If they remain unconscious, immediately designate a person around you by pointing to them (otherwise they will be less likely to be responsible) to call the emergency service (111, 911, 119 etc.), alerting them the location and state of the patient.

This is the point when clinical skills come in.

Airway: An unconscious person may have their airway obstructed by vomit or their own tongue (which falls back by gravity into the throat). You must secure the airway by scooping out any material, and clearing the tongue out of the way. This is done by tilting the head back far (as if they are looking up), then using one hand to pull their chin out. This opens the airway up so that mouth-to-mouth becomes effective.

Breathing: Put one ear right next to the person’s nose and mouth and check for any breathing sounds or air flow. If they are breathing, check the pulse to see if they are pumping blood. If not, go straight to CPR.

Circulation: It is best to check the central pulses such as the carotid (side of neck, next to the Adam’s apple), brachial (squeeze inner side of biceps) or femoral pulses. The carotid is often the easiest as most people know how to take it. If you feel a pulse, put the patient in recovery position as they are just unconscious, breathing and has blood flowing. If not, proceed to CPR (as you do with when the patient is not breathing).

CPR is composed of two actions: chest compressions and mouth-to-mouth breathing. The former is the strong compression of the chest wall to squeeze blood in and out of the heart; the latter is breathing air into the patient’s lungs and letting exhalation come out naturally.

Chest compressions are often misrepresented in medical dramas, and is extremely important that you do it correctly. First find where the sternum is (centre of ribcage, between the nipples) and place the heel of your left palm on it, then spread your fingers out. Put your right hand over your left and close your fingers around it for a good grip. If the patient is lying flat on the ground (with head tilted back), kneel beside them and stoop over their chest with straight, locked arms (bent arms exert much less pressure).

You are now ready to begin chest compressions. Press down hard, until the chest wall is compressed to about 1/3~½ depth (the chest wall is a springy structure, and do not worry about broken ribs, as being alive is more important for the person), then ease pressure to let it bounce back up. Ideally the time pushing and the time letting it bounce back should be the same, giving a good rhythm. Repeat this 30 times at the beat of 100/min, or in easier terms: to the beats of the Bee Gee’s song Stayin’ Alive (scientifically proven).

After 30 compressions, tilt the patient’s head back, lift their chin up, and lock your mouth over their mouth and nose to make an airtight seal. It is crucial that you use a face shield to prevent the spread of disease. Be aware that breaths are less important than the compressions, so if you do not have a face shield, let someone else do the breathing and focus on chest compressions. Pinch the nose closed to ensure air does not escape.
Forcefully breathe into them and look for the chest rising. Let go of the nose and pull away so that they can breathe out. Repeat once, then return to chest compressions.

After 2 minutes of CPR (30 compressions : 2 breaths, repeat 4 times), change places with another person capable of CPR, as otherwise you will tire out and become inefficient.

Defibrillation is only possible if you are near an AED (automated external defibrillator). Nowadays, AEDs are designed to be completely user-friendly so simply follow the instructions on the machine.

It is important to note that not all abnormal heart rhythms are “shockable” (see Flatline). Follow the AED’s instruction, as it will state whether shock is advised or not. Make sure that CPR is still happening continuously.

Repeat until help arrives.

As a final note, remember that the patient is dead whether you do CPR or not, so there is nothing to lose. Believe it or not, this will be of incredible help in calming your mind when struck with such an emergency. Even with CPR, there is a maximum 30% chance the patient will survive, 10% if it occurs outside the hospital. But if you do nothing, their survival chance will be 0%, so put all your energy into resuscitating them, and you may just save a life.

Posted in Psychology & Medicine


When people think of the word “flatline”, they immediately visualise a medical crisis where a patient is lying unconscious, with doctors and nurses shouting out medical terminology while administering drugs, all to the suspenseful music and apathetic monotone and single horizontal line on the ECG machine. The doctor then shouts “Clear!” and proceeds to shock the patient with two paddles. This is repeated until some structures appear on the ECG, symbolising that the crisis has been resolved.

Of course this is a scene from a typical medical drama. Television shows, especially medical ones, are notorious for sacrificing medical accuracy for the sake of drama and tension. The “flatline” is the most cliché, repeated mistake made by almost every medical television show ever made.

The proper terminology for a flatline (a colloquial term), is asystole. This means that there is no systole, or contraction of the heart. An ECG (electrocardiogram) measures electrical signals in the heart, and in asystole there is insignificant amounts of electric activity, and the classic QRS complex is not seen. In this state, the heart is not pumping any blood and is electrically silent, meaning that the patient is clinically dead.

When asked how to treat this condition, the majority of people (even medical students) will shout “Shock!” or “Defibrillate!”. Defibrillation is the administering of an electrical shock to try “reboot” the heart, and correct the fibrillation – the chaotic electrical signal interfering with the normal, rhythmic electrical activity. Unfortunately, this is completely wrong yet so often depicted on television and films.
As asystole is a state of no electrical activity, there is no fibrillation to remove, nor is there anything to reset. Defibrillation in this state may even cause harm, causing tissue damage and lowering the chance of survival.

The correct treatment is injecting adrenaline (epinephrine in the U.S.A, atropine may be administered also) and CPR. Unfortunately, asystole is a condition that cannot be reversed, unless the heart somehow restores its own electrical activity. CPR merely keeps the patient’s perfusion going to preserve the organs for a longer time. Ergo, asystole signifies certain death, especially after 5 minutes where the heart will not respond to any drugs or electric shocks. In fact, asystole is one of the conditions required for the certification of a patient’s death.

Another related example of a (potentially fatal) misrepresentation of medicine in the media is the adrenaline injection. As mentioned before, this is the treatment for asystole. However, it is administered intravenously (into a vein) and never directly into the heart as in Pulp Fiction. This is more likely to kill the patient than save them, as the heart muscles could be damaged and delicate coronary arteries may become ruptured.

So why is it that the media continues to depict such blatant errors, that set a “common sense” that affect even medical professionals? This is most likely due to the audience wanting to see a dramatic scene, in a gripping life-or-death situation with drastic, powerful action. For example, the audience would much rather see the use of paddles or a giant needle being stabbed into the patient than seeing continuous CPR with no showy movements.

The next time you watch a medical television show, count how many times the doctors try to defibrillate a flatline.