Posted in Psychology & Medicine

Viscera: Large Intestine

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

The final destination of food travelling through the digestive tract is the large intestine, or colon. It is the site where digested food is transformed into faeces, ready for excretion. The large intestine is much shorter than the small intestine – roughly 1.5m in length. Unlike the small intestine which is relatively free and mobile, the colon is fixed to the abdominal wall. It starts in the lower-right corner of the abdomen in a pouch called the caecum (connected to the small bowel). This is where the appendix is located. The colon then ascends the right-side of the abdomen (ascending colon) all the way to the diaphragm, does a 90-degree turn to the left (transverse colon) until it hits the spleen, then goes downwards to the lower-left corner (descending colon). Here, the colon bends into an S-shape towards the centre (sigmoid colon) until it ends as the rectum, which opens out to the anus. The colon essentially frames the contents of the abdomen.

The colon’s main function is the absorption of water and salts from the food that has been processed by the small bowel. As it sucks out the water in this liquid, it becomes more and more solidified. The brown colour of normal stool comes from bile and bilirubin (from the breakdown of red blood cells) secreted by the liver into the duodenum. For this reason, biliary obstruction (e.g. due to gallstones) causes pale stool and dark urine (overflow). Stool also contains undigested material like fibre, giving it bulk. Because it is at the end of the digestive tract, stool can be used to diagnose many diseases, such as an infection in the gut (bacterial, viral or parasitic).

The colon is a common site for cancer to occur in. Because there is room to grow, colon cancers are often found late when they have already spread and is incurable. The key symptoms of colon cancer are bloody stool (although this can be due to many reasons such as haemorrhoids), worsening constipation, anaemia (from blood loss causing iron deficiency), change in bowel habit and general symptoms of cancer (e.g. weight loss, fatigue).

(Appearance of colon cancer on colonoscopy)

Posted in Psychology & Medicine

Viscera: Stomach

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

The stomach is an organ that is well-known, so much so that the abdomen is often colloquially referred to as “the stomach”. It is an important organ that is part of the digestive tract, responsible for breaking down food that comes in through the mouth then the oesophagus. The stomach lies centrally and just below the sternum, surrounded by the liver on the right, spleen on the left and pancreas below.

Food is broken down primarily by the mouth via chewing. Once you swallow, the food is squeezed through the oesophagus until it is dumped into the stomach. The stomach produces a very strong acid (hydrochloric acid, pH 1~2), which dissolves the chewed food. It enhances this process by contracting its powerful wall muscles to churn and mix the food. Once it is nicely dissolved into a thick liquid, it releases it into the duodenum (the first part of the small intestine).

If the stomach uses strong acid to breakdown food, which is organic matter, how come it does not digest itself? This is because the lining of the stomach is coated with a substance called mucin which protects the stomach wall from being corroded by acid. However, the stomach is not perfectly safe from the acid it produces. If the stomach becomes inflamed, the production of mucin and self-repair process of the stomach is limited and acid begins dissolving the stomach lining. This causes peptic ulcers to form, which is essentially a hole in the lining of the stomach, causing severe abdominal pain and occasionally bleeding. Peptic ulcers are commonly caused by an infection by a bacteria called Helicobacter pylori. It may also be caused by severe stress and anger or medications such as NSAIDs (non-steroidal anti-inflammatory drugs, e.g. ibuprofen, diclofenac/Voltaren).

Posted in Psychology & Medicine

Viscera: Kidneys

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

Despite being a vital organ that one cannot survive without, the kidneys are not very famous to the general populace. Not many people know what the kidneys do, let alone where exactly they lie in the body. The kidneys (of which there are two) are the major excretory organs of the human body. They are found in the back of the abdomen (in an area called the retroperitoneal space), tucked under the lower three ribs below the diaphragm. This is higher than where most people think the kidneys lie, because the abdomen extends quite high into the ribcage, as seen from the location of the liver.

image

The kidneys undertake many functions, but they can broadly be grouped into three groups: making urine, filtering blood and maintaining homeostasis.

Although the organ associated with urine is the bladder, it only stores urine, which is made by the kidneys and sent to the bladder via the ureters. Urine is the body’s main way of disposing excess water, salt and other byproducts such as urea. The kidneys fine-tune how much water we lose to urine depending on how much water is in the body. For example, if you drink a lot of water, the kidney senses the blood vessels being dilated and the blood being diluted, then allows more water to leave the body. Conversely, if you are dehydrated, the kidney does everything in its power to hold on to as much water as possible, resulting in concentrated urine.

The kidneys literally act as filters for the blood using a fine, intricate network of sieve-like blood vessels. These vessels have walls that have various sized holes that causes water and small molecules to pass into the kidney, while leaving large proteins in the blood. The filtered blood (containing water, various electrolytes and other metabolites) travel through a pipe network called nephrons, which reabsorb things the body needs (like water when you are dehydrated or salts like sodium), while leaving toxic products like urea and various medications.

image

Lastly, the kidneys maintain homeostasis (the status quo of the body) in various ways, such as fine-tuning the water and salt levels of the body. If you have renal failure where your kidneys do not function properly, you will retain too much water and may suffer a build-up of potassium, which can cause fatal changes in your heart rhythm. It is also involved in controlling the acidity of your blood and your blood pressure, through very complex mechanisms.

One way kidneys are famous is that they are popularly mentioned in the context of organ transplants. If you have renal failure, you may be able to get a kidney from a healthy, live donor as you can live with one kidney. When you take out a kidney from a healthy person, the remaining kidney will grow in size to compensate for the other kidney, while the transplanted kidney will go on to save the patient’s life by doing the many jobs mentioned above.

image

Posted in Psychology & Medicine

Viscera: Spleen

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

The spleen is one of the lesser known organs of the human body. If you asked the lay person, they would not know what the spleen does, let alone where it is. The spleen is a solid organ that lies in the left upper corner of the abdomen, tucked under the left diaphragm (opposite to the liver which lies under the right diaphragm). Its functions are mainly related to blood, such as removing old red blood cells (sequestration), storing platelets in case there is an emergency bleeding, making antibodies and releasing lymphocytes (type of white blood cell) to help fight infection and in times of need, creating red blood cells. Red blood cells are usually made in bone marrow in adults, but if the bone marrow fails (e.g. leukaemia), the spleen and liver can step in to create vital blood components (extramedullary haematopoiesis).

As most of the functions of the spleen are not technically necessary to sustain life, it can be removed without significant consequences. The spleen is sometimes removed when a patient has severe thrombocytopaenia (lack of platelets) or when the spleen is damaged by trauma. Because it is a solid organ, trauma to it such as a kick to the stomach can cause it to rupture (i.e. break in to pieces). Splenic rupture can cause life-threatening haemorrhage (bleeding) and may not be evident in trauma cases. A person without a spleen needs regular check-ups and immunisations to help fight infections as they have a weakened immune system.

The role of the spleen was a mystery for thousands of years and thus various cultures tried to explain various medical phenomena using the spleen. The ancient Greeks thought the spleen produced black bile, which was associated with melancholy. The spleen was also associated to anger by the English and laughter by the Talmud.

Posted in Psychology & Medicine

Viscera: Heart

(Learn more about the organs of the human bodies in other posts in the Viscera series here: https://jineralknowledge.com/tag/viscera/?order=asc)

Out of the numerous organs found in the human body, the heart is perhaps the most well-known. This is probably because since the dawn of time, man has put his hand on his chest and felt the rhythmic pounding of his heart – a reminder that he is alive. The function of the heart is to pump oxygenated blood from the lungs to the rest of the body via the circuit of blood vessels (vascular system).

The heart relies on electricity to pump blood in a rhythmic, autonomous way. Because of this property, a heart will beat on its own even if you took it out of the human body. Every muscle in the human body requires an electrical impulse for it to contract. This is also the case in the heart, but unlike the skeletal muscle in other parts of the body which receive their impulses from the brain and spinal cord, the heart has its own source of electricity.

The heart has a small group of pacemaker cells in the right atrium called the sinoatrial node, which always fires electrical impulses at a set rate and rhythm (sinus rhythm). The SA node will do this without any instruction from the brain. The impulse from the SA node spreads throughout the atria of the heart, causing the atrial muscles to contract simultaneously to squeeze blood into the ventricles. The impulses then reach the atrioventricular node, which filters the signals and sends a stream of electricity through a wiring system known as the Purkinje fibres. These fibres act like a high-speed internet cables running down the centre of the heart, sending rapid signals through out the ventricles to induce a strong, cooridnated contraction in both ventricles. This causes blood to be forcefully squeezed out through the two outlet vessels of the heart: the pulmonary artery (to the lungs) and the aorta (to the rest of the body).

image

Although the SA node is completely autonomous, it can be controlled using hormones, nerve signals and medications. For example, adrenaline will speed up the rate the heart beats at while massaging the carotid arteries in the neck will slow the heart down.

One thing people wonder about is what the doctors listen to when they put a stethoscope to a patient’s chest. Everyone knows the heart makes a rhythmic “lub dub” sound as it beats away, but what information could that give away? A doctor can gain much information about the heart from a cardiac examination by taking the pulse and blood pressure, but listening to the heart (auscultation) may reveal a medical sign known as a murmur. A murmur is any added sound other than the normal “lub dub” sound of the heart. For example, a heart with aortic stenosis may give the sound “shhhhhhh” as if it was giving off static. This sound is produced when blood flow in the heart is turbulent and not smooth. This may be for a number of reasons but the most common reason is because the valves of the heart are not functioning properly. For example, the valve between the left atrium and left ventricle may be leaky (mitral regurgitation) or the valve at the start of the aorta may be stiff and narrowed (aortic stenosis).

By carefully listening to the sound the heart makes, an experienced doctor may pick up on such structural abnormalities even without the use of fancy medical imaging technologies.

Posted in Psychology & Medicine

Urine

Despite the implied disgusting nature (especially smell) of urine, it is one of the most important types of “samples” used in medicine for diagnostic purposes. Like blood, urine can tell a lot about a person’s health and whether they have a certain disease or not.

One of the earliest recorded uses of urine as a medical test was for the detection of diabetes mellitus. People noticed that the urine of a diabetic would often smell quite sweet, and also taste sweet (it is uncertain how they came to test urine this way). This is because a diabetic has too much glucose (sugar) in their blood, causing it to spill over into the urine as the kidneys become saturated. In fact, the words diabetes mellitus stand for “passing through” (referring to the symptom of frequent urination) and “honey-sweet”. A completely unrelated disease called diabetes insipidus also causes frequent urination, but the urine does not taste sweet, hence “insipidus” (tasteless). This type of etymology is also seen in countries like Korea, China and Japan, where the word 당뇨(糖尿) literally stands for “sugar urine”. Although we no longer taste urine, it is still used to gauge the severity of diabetes by measuring the amount of protein in the urine (due to kidney damage).

There are many other tests one can do with urine to check for certain diseases. The chemical composition of urine tells us about the hydration status of a person, while giving away clues to diseases that cause electrolyte imbalance. It also gives some indication of how well the kidneys can do their job of concentrating urine. Certain markers such as white blood cells and bacteria in the urine can indicate a urinary tract infection. Antibodies in the urine can point towards a certain type of bacteria as the cause of a patient’s pneumonia, or whether a woman is pregnant (βhCG). Looking for proteins or sediments in the urine can be diagnostic of certain kidney diseases such as glomerulonephritis. Even rare diseases such as phaeochromocytomas can be diagnosed from the level of catecholamines in the urine (this is slightly too complex for our scopes).

A more interesting part of urinalysis is looking at the colour of the urine. Urine is usually a yellow colour, ranging in darkness depending on the concentration of urine. But when there are other things in the urine, the colour changes. Reddish urine suggests blood (which is not an indicator of kidney failure as TV shows say), which can be caused by trauma, UTIs, kidney stones or some other disease. Brown urine could be due to muscle breakdown somewhere in the body. Urine can appear very dark if the person has an illness called obstructive jaundice. Eating beetroots can cause your urine to turn bright red, while medications can change your urine colour from anywhere from red to orange to green. Murky or cloudy urine (with an offensive smell) may suggest a UTI.

Perhaps the most interesting urine colour known in medicine is purple. This unique colour is produced in a rare genetic disease called acute intermittent porphyria. If urine is collected from a patient suffering an attack of AIP (causes crippling abdominal pain) then left in the sun or under a UV light, it will turn purple due to certain proteins. Because of this, urine collected to test for AIP is wrapped in tinfoil before sending to the lab (where the chemicals are measured) to limit light exposure.

(Also read the article on how different colours of skin can be of diagnostic importance: http://jinavie.tumblr.com/post/32313894252/skin-colour)

Posted in History & Literature

Surgeon

In many cultures (especially in Asian countries), the public conception of doctors has changed where surgeons are considered the “real doctors”. This is particularly evident in Asian dramas where main characters tend to be surgeons, saving the patient’s life with dramatic operations and charisma. The idea that surgeons are superior to physicians may go as far as some adults advising medical students to become surgeons for a higher status (again, more evident in Asia). However, as the root of surgery is completely different from that of medicine, technically it is a misnomer to call a surgeon a “doctor”.

This is reflected in the relatively unknown fact that a fully-trained surgeon is referred to as “mister”, not “doctor”. To understand why surgeons call themselves Mr., we must look into the origin of the surgical discipline.

In ancient times, surgery was limited to treating flesh wounds and setting bones (with some exceptions such as trepanation), such as those sustained during battles. Other than the odd few cases of specialised surgeons such as Galen of ancient Greece and Hua Tuo of ancient China, it is hard to find records of doctors employing surgery as a form of treatment. This was mainly due to two reasons: that surgery was considered a “dirty, unrefined” form of treatment, and that surgery was too risky.

For a long time, especially in the Western world, surgery was considered to be of a lower status compared to medicine. It was considered more of a craft tradition – something which physicians believed was beneath them. Because of this, surgeries were mainly performed by barbers in medieval Europe. One can still find evidence of a barber’s alternative historical role on the barber’s pole, which has white, red and blue stripes. The white stripe symbolises bandages, the red symbolises arterial blood and the blue symbolises venous blood. This originates from the practice of bloodletting, where white bandages wrapped around a pole would get dyed red from the blood, giving the appearance of the barber’s pole. The profession of “surgeon” did not formally appear until around the 18th century when a Guild of Surgeons was formed in England. However, physicians refused to accept surgeons as equals for a further century. When they did come to accept that surgery was a legitimate form of medical treatment, the surgeons decided that they did not want to be assimilated as doctors, so they chose to keep their title of “mister” to distinguish themselves from physicians.

The reason why surgery was considered an unrefined art in the past mainly focuses on three issues: bleeding, pain and infections. Before modern surgical developments, uncontrolled bleeding was a real issue in surgery. This not only made surgeries extremely messy, but it was also dangerous for the patient as patients would often die from shock (dangerously low blood pressure). On top of this, anaesthetics was only introduced in the late 19th century, meaning before that, patients had to suffer the pain of their flesh being cut and stitched with no relief. Of course, this meant that surgeries were almost always a brutal scene, with the agonising screams of the patients filling the room, while they sprayed blood everywhere. Lastly, even if the patient somehow survived the surgery without bleeding out or dying from the stress and pain, there still remained a high risk of post-operative infection. Thus, surgeries were most often unsuccessful and were considered a barbaric form of treatment with no promise.

Thanks to medical advancements, surgery has become an important aspect of medicine, where one cannot live without the other. However, the tension still remains between physicians and surgeons, with each profession jokingly mocking the other whenever a chance arises.

Posted in History & Literature

Dracula

Dracula is a fantasy/horror novel written by Bram Stoker in 1897. It is written as a series of letters, diary entries and other log entries, telling the battle between the vampire Count Dracula and Professor Van Helsing (with the help of some other people). It is one of the most well-known horror fictions in history and defined the modern image of vampires. Although it seems unlikely, the blood-sucking, immortal, creepy vampire that is Count Dracula is (loosely) based on an actual person.

Vlad III Dracula of Wallachia was a Romanian prince who led his army to fight against the invading Ottoman Empire during the 15th century, which was expanding its reach throughout Europe at the time. He was also referred to as Vlad the Impaler due to his incredibly cruel punishment of prisoners and enemies. He would kill the victims by stabbing their bodies with spears, typically through the anus up to the mouth. He would then have the bodies hanging as a warning to others. The victims would die a slow and painful death as they were drained of blood.

Another interesting fact is that Vlad III was an expert in guerilla warfare and would frequently hide his army in trees and strike the enemy at nighttime. This earned him a legend that he was bat-like – hanging from trees and only attacking at night to drain people of their blood. It is likely that Stoker took this legend and incorporated it into his novel, making Count Dracula able to transform into a large bat.

It is fascinating to see how someone who is portrayed as a noble hero in Romania and Slavic countries is remembered as an archetypal monster in modern times. This serves to remind us that no matter what good deed we may do, the world will only focus on a certain aspect and define you by that characteristic. The world is stubborn, critical and narrow-minded. Ergo, it is a waste of time trying to convince the world that you are a certain kind of person. As long as you know what kind of person you truly are and accept it, you will be able to live a happy life.

Posted in Science & Nature

Caesarean Section

(To read about how babies are made and born, read the From Cell to Birth miniseries! https://jineralknowledge.com/tag/arkrepro/?order=asc)

Most animals give birth through a female’s vagina. Of course humans are the same when it comes to natural birth, but nowadays, it is not uncommon to find women wanting a caesarean instead of the traditional method. A caesarean (also called C-section) is a surgical procedure where the fetus is taken out by cutting through the lower abdomen into the uterus. The history of caesareans is quite dark. Back in the old days when medicine was not advanced, caesareans were mostly used to rescue fetuses from mothers who had died during childbirth. The first record of a successful caesarean where the mother survived dates back to the 1500s. Many people believe the word “caesarean” came from the Roman emperor Julius Caesar, who was allegedly born via a caesarean. However, it was rare for caesareans to be performed in Roman times and even if they were, the mothers almost certainly died in the process. Given that his mother was alive and healthy well into his adulthood, it is highly unlikely that Caesar was born by caesarean (there are no concrete records of it either).

There is much debate to whether a caesarean is better or worse than natural birth (except in emergency situations where a caesarean is required). According to research (in cases without known risks to the fetus), the mortality rate is definitely higher in babies born by caesarean compared to those born naturally. This is most likely due to a caesarean bypassing some of the physiological changes that occur during vaginal birth.

Another debate is about the use of general versus regional anaesthesia (spinal block) when doing a caesarean. A fascinating fact about childbirth is that when a baby is born, it cries to expand its lungs but then quietens down for about an hour (unless it is in pain or there is some stimuli). This is possibly a mechanism to allow bonding between the mother and baby. New mothers often remember the moments following the birth of the child as extremely emotional and blissful. Contrastingly, mothers who are under general anaesthesia and not awake when their child is born bond less with the baby initially (some mothers do not even recognise the baby as their own). Thus, unless it is an emergency caesarean, a spinal block (which allows the mother to be awake and painless) is preferable over general anaesthesia.

Lastly, it is common tradition to cut the umbilical cord straight after the child is born. But is this okay? When the fetus is in the uterus, it shares its cardiovascular system with the placenta. The umbilical cord connects the two and carries blood to and fro. At any given point, the placenta contains 30~50% of the fetal blood. If the umbilical cord is suddenly cut, the fetus essentially loses this blood, being born in a state of low blood volume. If you look at the umbilical cord, you can see that it is about 1m in length, which is enough for the baby to be put next to the mother’s breasts for breastfeeding and bonding. Perhaps we are cutting the cord too soon, not letting the blood flow back from the placenta to the fetus.

If you think about it, humanity has been giving birth without too many problems to survive generation after generation for 200,000 years (otherwise we would not exist). Although the mortality rate was high, Mother Nature has optimised childbirth over time through evolution. Ergo, it is possible that modern medicine is intervening too much in a natural process. We must always consider whether medical advances are helpful or harmful to us.

image

Posted in Psychology & Medicine

Sleeping Sickness

A woman travelling in Africa is bitten by what appears to be a mosquito. She swats the insect and keeps on going about her journey. The next week, she finds that she has a small nodule where she was bit. She is also feeling slightly unwell, with fever and fatigue. Over the following two weeks, her fever worsens (coming and going intermittently) and she notices large lumps along the back of her neck. By this stage, she is experiencing muscle and joint pain as well. After returning home from her trip, she finds that her symptoms have not resolved. On top of her fever and pains, she begins experiencing headaches, mood swings, lethargy, confusion, clumsiness, delayed response to pain, sleepiness during the day and insomnia at night. She begins to worry that something is wrong, but she believes that it is a bad flu and does not see a doctor. Her symptoms worsen with time (sleeping up to 15 hours a day), until one day, she falls asleep and does not wake up. She is taken to a hospital, where it is discovered she is in a coma. She dies within a week.

This is the typical presentation of sleeping sickness, also known as human African trypanosomiasis. It is an infectious disease caused by a protozoan parasite called Trypanosoma brucei (comes in two types: T. brucei rhodesiense (East African type) and T. brucei gambiense (West African type)), which is transmitted by tsetse flies – a bloodsucking fly endemic to sub-Saharan Africa (there are also case reports of sexual transmission between people). When infected, the parasite rapidly proliferates in the patient’s bloodstream. It is not detected by the host immune system, thanks to a surface protein called VSG. This allows it to spread through the patient swiftly and silently via the circulatory and lymphatic systems. The early symptoms (intermittent fever, rash, lymph node enlargement), typically presenting about a week or two after infection, are due to the parasite spreading through the blood and lymph. As the infection spreads, the parasites begin to invade the central nervous system (although in the West African type of the disease, patients often die from the toxic effects of the parasite replicating in the blood before they reach this stage).

As the infection spreads through the CNS, it causes the neurological symptoms described in the case. The sleepiness (from where the disease gets its name from) worsens as the disease progresses, with patients finding it difficult to wake up in the morning, even sleeping for over 20 hours. The sleepiness is caused by a chemical called tryptophol, which is produced by the parasite. Essentially, the neurological symptoms appear as if the person’s brain is slowing down, until they fall into a coma, resulting in death without treatment (usually within 2~3 years since the infection).

Sleeping sickness is invariably fatal unless treated early. Once the patient reaches the second stage (neurological phase), treatment becomes very difficult. The current first line treatment is a drug called melarsoprol, which is a form of arsenic. Because of its toxic nature, it is extremely dangerous and there is around an 8% chance of the patient dying from side effects. Fortunately, there are less dangerous and more effective treatments such as eflornithine (which only works for the West African type) being developed.